Outlier Aware Network Embedding Algorithm (ONE)
Attributed network embedding has received much interest from the research community as most of the networks come with some content in each node, which is also known as node attributes. Existing attributed network approaches work well when the network is consistent in structure and attributes, and nodes behave as expected. But real world networks often have anomalous nodes. Typically these outliers, being relatively unexplainable, affect the embeddings of other nodes in the network. Thus all the downstream network mining tasks fail miserably in the presence of such outliers. Hence an integrated approach to detect anomalies and reduce their overall effect on the network embedding is required. Towards this end, we propose an unsupervised outlier aware network embedding algorithm (ONE) for attributed networks, which minimizes the effect of the outlier nodes, and hence generates robust network embeddings. We align and jointly optimize the loss functions coming from structure and attributes of the network. To the best of our knowledge, this is the first generic network embedding approach which incorporates the effect of outliers for an attributed network without any supervision. We experimented on publicly available real networks and manually planted different types of outliers to check the performance of the proposed algorithm. Results demonstrate the superiority of our approach to detect the network outliers compared to the state-of-the-art approaches. We also consider different downstream machine learning applications on networks to show the efficiency of ONE as a generic network embedding technique. The source code is made available at https://…/ONE. …
Flexible Attributed Network Embedding (FANE)
Network embedding aims to find a way to encode network by learning an embedding vector for each node in the network. The network often has property information which is highly informative with respect to the node’s position and role in the network. Most network embedding methods fail to utilize this information during network representation learning. In this paper, we propose a novel framework, FANE, to integrate structure and property information in the network embedding process. In FANE, we design a network to unify heterogeneity of the two information sources, and define a new random walking strategy to leverage property information and make the two information compensate. FANE is conceptually simple and empirically powerful. It improves over the state-of-the-art methods on Cora dataset classification task by over 5%, more than 10% on WebKB dataset classification task. Experiments also show that the results improve more than the state-of-the-art methods as increasing training size. Moreover, qualitative visualization show that our framework is helpful in network property information exploration. In all, we present a new way for efficiently learning state-of-the-art task-independent representations in complex attributed networks. The source code and datasets of this paper can be obtained from https://…/FANE. …
Cross-Domain Labeled LDA (CDL-LDA)
Cross-domain text classification aims at building a classifier for a target domain which leverages data from both source and target domain. One promising idea is to minimize the feature distribution differences of the two domains. Most existing studies explicitly minimize such differences by an exact alignment mechanism (aligning features by one-to-one feature alignment, projection matrix etc.). Such exact alignment, however, will restrict models’ learning ability and will further impair models’ performance on classification tasks when the semantic distributions of different domains are very different. To address this problem, we propose a novel group alignment which aligns the semantics at group level. In addition, to help the model learn better semantic groups and semantics within these groups, we also propose a partial supervision for model’s learning in source domain. To this end, we embed the group alignment and a partial supervision into a cross-domain topic model, and propose a Cross-Domain Labeled LDA (CDL-LDA). On the standard 20Newsgroup and Reuters dataset, extensive quantitative (classification, perplexity etc.) and qualitative (topic detection) experiments are conducted to show the effectiveness of the proposed group alignment and partial supervision. …
Generator and Responsibility Predictor (GRP)
Learning from complex demonstrations is challenging, especially when the demonstration consists of different strategies. A popular approach is to use a deep neural network to perform imitation learning. However, the structure of that deep neural network has to be “deep’ enough to capture all possible scenarios. Besides the machine learning issue, how humans learn in the sense of physiology has rarely been addressed and relevant works on spinal cord learning are rarer. In this work, we develop a novel modular learning architecture, the Generator and Responsibility Predictor (GRP) model, which automatically learns the sub-task policies from an unsegmented controller demonstration and learns to switch between the policies. We also introduce a more physiological based neural network architecture. We implemented our GRP model and our proposed neural network to form a model the transfers the swing leg control from the brain to the spinal cord. Our result suggests that by using the GRP model the brain can successfully transfer the target swing leg control to the spinal cord and the resulting model can switch between sub-control policies automatically. …
If you did not already know
28 Monday Dec 2020
Posted What is ...
in