**Thresholded Adaptive Calibration Error (TACE)**

The reliability of a machine learning model’s confidence in its predictions is critical for highrisk applications. Calibration-the idea that a model’s predicted probabilities of outcomes reflect true probabilities of those outcomes-formalizes this notion. While analyzing the calibration of deep neural networks, we’ve identified core problems with the way calibration is currently measured. We design the Thresholded Adaptive Calibration Error (TACE) metric to resolve these pathologies and show that it outperforms other metrics, especially in settings where predictions beyond the maximum prediction that is chosen as the output class matter. There are many cases where what a practitioner cares about is the calibration of a specific prediction, and so we introduce a dynamic programming based Prediction Specific Calibration Error (PSCE) that smoothly considers the calibration of nearby predictions to give an estimate of the calibration error of a specific prediction. … **DynMat**

To survive in the dynamically-evolving world, we accumulate knowledge and improve our skills based on experience. In the process, gaining new knowledge does not disrupt our vigilance to external stimuli. In other words, our learning process is ‘accumulative’ and ‘online’ without interruption. However, despite the recent success, artificial neural networks (ANNs) must be trained offline, and they suffer catastrophic interference between old and new learning, indicating that ANNs’ conventional learning algorithms may not be suitable for building intelligent agents comparable to our brain. In this study, we propose a novel neural network architecture (DynMat) consisting of dual learning systems, inspired by the complementary learning system (CLS) theory suggesting that the brain relies on short- and long-term learning systems to learn continuously. Our experiments show that 1) DynMat can learn a new class without catastrophic interference and 2) it does not strictly require offline training. … **Collaborative Compressive Sensing**

We propose a collaborative compressive sensing (CCS) framework consisting of a bank of $K$ compressive sensing (CS) systems that share the same sensing matrix but have different sparsifying dictionaries. This CCS system is guaranteed to yield better performance than each individual CS system in a statistical sense, while with the parallel computing strategy, it requires the same time as that needed for each individual CS system to conduct compression and signal recovery. We then provide an approach to designing optimal CCS systems by utilizing a measure that involves both the sensing matrix and dictionaries and hence allows us to simultaneously optimize the sensing matrix and all the $K$ dictionaries under the same scheme. An alternating minimization-based algorithm is derived for solving the corresponding optimal design problem. We provide a rigorous convergence analysis to show that the proposed algorithm is convergent. Experiments with real images are carried out and show that the proposed CCS system significantly improves on existing CS systems in terms of the signal recovery accuracy. … **Theta Method**

Accurate and robust forecasting methods for univariate time series are very important when the objective is to produce estimates for a large number of time series. In this context, the Theta method called researchers attention due its performance in the largest up-to-date forecasting competition, the M3-Competition. Theta method proposes the decomposition of the deseasonalised data into two ‘theta lines’. The first theta line removes completely the curvatures of the data, thus being a good estimator of the long-term trend component. The second theta line doubles the curvatures of the series, as to better approximate the short-term behaviour.

http://…/Theta.pdf …

# If you did not already know

**19**
*Saturday*
Dec 2020

Posted What is ...

in