Hadamard Matrix Guided Online Hashing (HMOH) google
Online image hashing has received increasing research attention recently, which receives large-scale data in a streaming manner to update the hash functions on-the-fly. Its key challenge lies in the difficulty in balancing the learning timeliness and model accuracy. To this end, most works exploit a supervised setting, i.e., using class labels to boost the hashing performance, which defects in two aspects: First, large amount of training batches are required to learn up-to-date hash functions, which however largely increase the learning complexity. Second, strong constraints, e.g., orthogonal or similarity preserving, are used, which are however typically relaxed and lead to large accuracy drop. To handle the above challenges, in this paper, a novel supervised online hashing scheme termed Hadamard Matrix Guided Online Hashing (HMOH) is proposed. Our key innovation lies in the construction and usage of Hadamard matrix, which is an orthogonal binary matrix and is built via Sylvester method. To release the need of strong constraints, we regard each column of Hadamard matrix as the target code for each class label, which by nature satisfies several desired properties of hashing codes. To accelerate the online training, the LSH is first adopted to align the length of target code and the to-be-learned binary code. And then, we treat the learning of hash functions as a set of binary classification problems to fit the assigned target code. Finally, we propose to ensemble the learned models in all rounds to maximally preserve the information of past streaming data. The superior accuracy and efficiency of the proposed method are demonstrated through extensive experiments on three widely-used datasets comparing to various state-of-the-art methods. …

Multifaceted Privacy google
Recent works in social network stream analysis show that a user’s online persona attributes (e.g., gender, ethnicity, political interest, location, etc.) can be accurately inferred from the topics the user writes about or engages with. Attribute and preference inferences have been widely used to serve personalized recommendations, directed ads, and to enhance the user experience in social networks. However, revealing a user’s sensitive attributes could represent a privacy threat to some individuals. Microtargeting (e.g.,Cambridge Analytica scandal), surveillance, and discriminating ads are examples of threats to user privacy caused by sensitive attribute inference. In this paper, we propose Multifaceted privacy, a novel privacy model that aims to obfuscate a user’s sensitive attributes while publicly preserving the user’s public persona. To achieve multifaceted privacy, we build Aegis, a prototype client-centric social network stream processing system that helps preserve multifaceted privacy, and thus allowing social network users to freely express their online personas without revealing their sensitive attributes of choice. Aegis allows social network users to control which persona attributes should be publicly revealed and which ones should be kept private. For this, Aegis continuously suggests topics and hashtags to social network users to post in order to obfuscate their sensitive attributes and hence confuse content-based sensitive attribute inferences. The suggested topics are carefully chosen to preserve the user’s publicly revealed persona attributes while hiding their private sensitive persona attributes. Our experiments show that adding as few as 0 to 4 obfuscation posts (depending on how revealing the original post is) successfully hides the user specified sensitive attributes without changing the user’s public persona attributes. …

Spectral-Pruning google
The model size of deep neural network is getting larger and larger to realize superior performance in complicated tasks. This makes it difficult to implement deep neural network in small edge-computing devices. To overcome this problem, model compression methods have been gathering much attention. However, there have been only few theoretical back-grounds that explain what kind of quantity determines the compression ability. To resolve this issue, we develop a new theoretical frame-work for model compression, and propose a new method called {\it Spectral-Pruning} based on the theory. Our theoretical analysis is based on the observation such that the eigenvalues of the covariance matrix of the output from nodes in the internal layers often shows rapid decay. We define ‘degree of freedom’ to quantify an intrinsic dimensionality of the model by using the eigenvalue distribution and show that the compression ability is essentially controlled by this quantity. Along with this, we give a generalization error bound of the compressed model. Our proposed method is applicable to wide range of models, unlike the existing methods, e.g., ones possess complicated branches as implemented in SegNet and ResNet. Our method makes use of both ‘input’ and ‘output’ in each layer and is easy to implement. We apply our method to several datasets to justify our theoretical analyses and show that the proposed method achieves the state-of-the-art performance. …

Ergodic Inference google
Approximate inference algorithm is one of the fundamental research fields in machine learning. The two dominant theoretical inference frameworks in machine learning are variational inference (VI) and Markov chain Monte Carlo (MCMC). However, because of the fundamental limitation in the theory, it is very challenging to improve existing VI and MCMC methods on both the computational scalability and statistical efficiency. To overcome this obstacle, we propose a new theoretical inference framework called ergodic Inference based on the fundamental property of ergodic transformations. The key contribution of this work is to establish the theoretical foundation of ergodic inference for the development of practical algorithms in future work. …