Joint Neural Architecture Search and Quantization (JASQ) google
Designing neural architectures is a fundamental step in deep learning applications. As a partner technique, model compression on neural networks has been widely investigated to gear the needs that the deep learning algorithms could be run with the limited computation resources on mobile devices. Currently, both the tasks of architecture design and model compression require expertise tricks and tedious trials. In this paper, we integrate these two tasks into one unified framework, which enables the joint architecture search with quantization (compression) policies for neural networks. This method is named JASQ. Here our goal is to automatically find a compact neural network model with high performance that is suitable for mobile devices. Technically, a multi-objective evolutionary search algorithm is introduced to search the models under the balance between model size and performance accuracy. In experiments, we find that our approach outperforms the methods that search only for architectures or only for quantization policies. 1) Specifically, given existing networks, our approach can provide them with learning-based quantization policies, and outperforms their 2 bits, 4 bits, 8 bits, and 16 bits counterparts. It can yield higher accuracies than the float models, for example, over 1.02% higher accuracy on MobileNet-v1. 2) What is more, under the balance between model size and performance accuracy, two models are obtained with joint search of architectures and quantization policies: a high-accuracy model and a small model, JASQNet and JASQNet-Small that achieves 2.97% error rate with 0.9 MB on CIFAR-10. …

Stochastic Primal-Dual Q-Learning (SPD Q-Learning) google
In this work, we present a new model-free and off-policy reinforcement learning (RL) algorithm, that is capable of finding a near-optimal policy with state-action observations from arbitrary behavior policies. Our algorithm, called the stochastic primal-dual Q-learning (SPD Q-learning), hinges upon a new linear programming formulation and a dual perspective of the standard Q-learning. In contrast to previous primal-dual RL algorithms, the SPD Q-learning includes a Q-function estimation step, thus allowing to recover an approximate policy from the primal solution as well as the dual solution. We prove a first-of-its-kind result that the SPD Q-learning guarantees a certain convergence rate, even when the state-action distribution is time-varying but sub-linearly converges to a stationary distribution. Numerical experiments are provided to demonstrate the off-policy learning abilities of the proposed algorithm in comparison to the standard Q-learning. …

Multi-Linear Multi-View Clustering (MMC) google
In many real-world applications, data are often unlabeled and comprised of different representations/views which often provide information complementary to each other. Although several multi-view clustering methods have been proposed, most of them routinely assume one weight for one view of features, and thus inter-view correlations are only considered at the view-level. These approaches, however, fail to explore the explicit correlations between features across multiple views. In this paper, we introduce a tensor-based approach to incorporate the higher-order interactions among multiple views as a tensor structure. Specifically, we propose a multi-linear multi-view clustering (MMC) method that can efficiently explore the full-order structural information among all views and reveal the underlying subspace structure embedded within the tensor. Extensive experiments on real-world datasets demonstrate that our proposed MMC algorithm clearly outperforms other related state-of-the-art methods. …

AttoNet google
While deep neural networks have achieved state-of-the-art performance across a large number of complex tasks, it remains a big challenge to deploy such networks for practical, on-device edge scenarios such as on mobile devices, consumer devices, drones, and vehicles. In this study, we take a deeper exploration into a human-machine collaborative design approach for creating highly efficient deep neural networks through a synergy between principled network design prototyping and machine-driven design exploration. The efficacy of human-machine collaborative design is demonstrated through the creation of AttoNets, a family of highly efficient deep neural networks for on-device edge deep learning. Each AttoNet possesses a human-specified network-level macro-architecture comprising of custom modules with unique machine-designed module-level macro-architecture and micro-architecture designs, all driven by human-specified design requirements. Experimental results for the task of object recognition showed that the AttoNets created via human-machine collaborative design has significantly fewer parameters and computational costs than state-of-the-art networks designed for efficiency while achieving noticeably higher accuracy (with the smallest AttoNet achieving ~1.8% higher accuracy while requiring ~10x fewer multiply-add operations and parameters than MobileNet-V1). Furthermore, the efficacy of the AttoNets is demonstrated for the task of instance-level object segmentation and object detection, where an AttoNet-based Mask R-CNN network was constructed with significantly fewer parameters and computational costs (~5x fewer multiply-add operations and ~2x fewer parameters) than a ResNet-50 based Mask R-CNN network. …