Multivariate Bernoulli Autoregressive Process (BAR)
Multivariate Bernoulli autoregressive (BAR) processes model time series of events in which the likelihood of current events is determined by the times and locations of past events. These processes can be used to model nonlinear dynamical systems corresponding to criminal activity, responses of patients to different medical treatment plans, opinion dynamics across social networks, epidemic spread, and more. Past work examines this problem under the assumption that the event data is complete, but in many cases only a fraction of events are observed. Incomplete observations pose a significant challenge in this setting because the unobserved events still govern the underlying dynamical system. In this work, we develop a novel approach to estimating the parameters of a BAR process in the presence of unobserved events via an unbiased estimator of the complete data log-likelihood function. We propose a computationally efficient estimation algorithm which approximates this estimator via Taylor series truncation and establish theoretical results for both the statistical error and optimization error of our algorithm. We further justify our approach by testing our method on both simulated data and a real data set consisting of crimes recorded by the city of Chicago. …
Attention-Aware Generative Adversarial Network (ATA-GAN)
In this work, we present a novel approach for training Generative Adversarial Networks (GANs). Using the attention maps produced by a Teacher- Network we are able to improve the quality of the generated images as well as perform weakly object localization on the generated images. To this end, we generate images of HEp-2 cells captured with Indirect Imunofluoresence (IIF) and study the ability of our network to perform a weakly localization of the cell. Firstly, we demonstrate that whilst GANs can learn the mapping between the input domain and the target distribution efficiently, the discriminator network is not able to detect the regions of interest. Secondly, we present a novel attention transfer mechanism which allows us to enforce the discriminator to put emphasis on the regions of interest via transfer learning. Thirdly, we show that this leads to more realistic images, as the discriminator learns to put emphasis on the area of interest. Fourthly, the proposed method allows one to generate both images as well as attention maps which can be useful for data annotation e.g in object detection. …
Attentive Adversarial Domain-Invariant Training (AADIT)
Adversarial domain-invariant training (ADIT) proves to be effective in suppressing the effects of domain variability in acoustic modeling and has led to improved performance in automatic speech recognition (ASR). In ADIT, an auxiliary domain classifier takes in equally-weighted deep features from a deep neural network (DNN) acoustic model and is trained to improve their domain-invariance by optimizing an adversarial loss function. In this work, we propose an attentive Adversarial domain-invariant training (AADIT) in which we advance the domain classifier with an attention mechanism to automatically weight the input deep features according to their importance in domain classification. With this attentive re-weighting, AADIT can focus on the domain normalization of phonetic components that are more susceptible to domain variability and generates deep features with improved domain-invariance and senone-discriminativity over ADIT. Most importantly, the attention block serves only as an external component to the DNN acoustic model and is not involved in ASR, so AADIT can be used to improve the acoustic modeling with any DNN architectures. More generally, the same methodology can improve any adversarial learning system with an auxiliary discriminator. Evaluated on CHiME-3 dataset, the AADIT achieves 13.6% and 9.3% relative WER improvements, respectively, over a multi-conditional model and a strong ADIT baseline. …
Markov Modulated Hawkes Process (MMHP)
Modeling event dynamics is central to many disciplines. Patterns in observed event arrival times are commonly modeled using point processes. Such event arrival data often exhibits self-exciting, heterogeneous and sporadic trends, which is challenging for conventional models. It is reasonable to assume that there exists a hidden state process that drives different event dynamics at different states. In this paper, we propose a Markov Modulated Hawkes Process (MMHP) model for learning such a mixture of event dynamics and develop corresponding inference algorithms. Numerical experiments using synthetic data and data from an animal behavior study demonstrate that MMHP with the proposed estimation algorithms consistently recover the true hidden state process in simulations, and separately captures distinct event dynamics that reveal interesting social structures in the real data. …
If you did not already know
23 Monday Nov 2020
Posted What is ...
in