Bayesian Optimized Continual Learning (BOCL)
Though neural networks have achieved much progress in various applications, it is still highly challenging for them to learn from a continuous stream of tasks without forgetting. Continual learning, a new learning paradigm, aims to solve this issue. In this work, we propose a new model for continual learning, called Bayesian Optimized Continual Learning with Attention Mechanism (BOCL) that dynamically expands the network capacity upon the arrival of new tasks by Bayesian optimization and selectively utilizes previous knowledge (e.g. feature maps of previous tasks) via attention mechanism. Our experiments on variants of MNIST and CIFAR-100 demonstrate that our methods outperform the state-of-the-art in preventing catastrophic forgetting and fitting new tasks better. …
Collaborative Memory Network (CMN)
Recommendation systems play a vital role to keep users engaged with personalized content in modern online platforms. Deep learning has revolutionized many research fields and there is a recent surge of interest in applying it to collaborative filtering (CF). However, existing methods compose deep learning architectures with the latent factor model ignoring a major class of CF models, neighborhood or memory-based approaches. We propose Collaborative Memory Networks (CMN), a deep architecture to unify the two classes of CF models capitalizing on the strengths of the global structure of latent factor model and local neighborhood-based structure in a nonlinear fashion. Motivated by the success of Memory Networks, we fuse a memory component and neural attention mechanism as the neighborhood component. The associative addressing scheme with the user and item memories in the memory module encodes complex user-item relations coupled with the neural attention mechanism to learn a user-item specific neighborhood. Finally, the output module jointly exploits the neighborhood with the user and item memories to produce the ranking score. Stacking multiple memory modules together yield deeper architectures capturing increasingly complex user-item relations. Furthermore, we show strong connections between CMN components, memory networks and the three classes of CF models. Comprehensive experimental results demonstrate the effectiveness of CMN on three public datasets outperforming competitive baselines. Qualitative visualization of the attention weights provide insight into the model’s recommendation process and suggest the presence of higher order interactions. …
SigOpt Orchestrate
Two key factors dominate the development of effective production grade machine learning models. First, it requires a local software implementation and iteration process. Second, it requires distributed infrastructure to efficiently conduct training and hyperparameter optimization. While modern machine learning frameworks are very effective at the former, practitioners are often left building ad hoc frameworks for the latter. We present SigOpt Orchestrate, a library for such simultaneous training in a cloud environment. We describe the motivating factors and resulting design of this library, feedback from initial testing, and future goals. …
GossipGraD
In this paper, we present GossipGraD – a gossip communication protocol based Stochastic Gradient Descent (SGD) algorithm for scaling Deep Learning (DL) algorithms on large-scale systems. The salient features of GossipGraD are: 1) reduction in overall communication complexity from {\Theta}(log(p)) for p compute nodes in well-studied SGD to O(1), 2) model diffusion such that compute nodes exchange their updates (gradients) indirectly after every log(p) steps, 3) rotation of communication partners for facilitating direct diffusion of gradients, 4) asynchronous distributed shuffle of samples during the feedforward phase in SGD to prevent over-fitting, 5) asynchronous communication of gradients for further reducing the communication cost of SGD and GossipGraD. We implement GossipGraD for GPU and CPU clusters and use NVIDIA GPUs (Pascal P100) connected with InfiniBand, and Intel Knights Landing (KNL) connected with Aries network. We evaluate GossipGraD using well-studied dataset ImageNet-1K (~250GB), and widely studied neural network topologies such as GoogLeNet and ResNet50 (current winner of ImageNet Large Scale Visualization Research Challenge (ILSVRC)). Our performance evaluation using both KNL and Pascal GPUs indicates that GossipGraD can achieve perfect efficiency for these datasets and their associated neural network topologies. Specifically, for ResNet50, GossipGraD is able to achieve ~100% compute efficiency using 128 NVIDIA Pascal P100 GPUs – while matching the top-1 classification accuracy published in literature. …
If you did not already know
19 Thursday Nov 2020
Posted What is ...
in