Deep Roots
We propose a new method for training computationally efficient and compact convolutional neural networks (CNNs) using a novel sparse connection structure that resembles a tree root. Our sparse connection structure facilitates a significant reduction in computational cost and number of parameters of state-of-the-art deep CNNs without compromising accuracy. We validate our approach by using it to train more efficient variants of state-of-the-art CNN architectures, evaluated on the CIFAR10 and ILSVRC datasets. Our results show similar or higher accuracy than the baseline architectures with much less compute, as measured by CPU and GPU timings. For example, for ResNet 50, our model has 40% fewer parameters, 45% fewer floating point operations, and is 31% (12%) faster on a CPU (GPU). For the deeper ResNet 200 our model has 25% fewer floating point operations and 44% fewer parameters, while maintaining state-of-the-art accuracy. For GoogLeNet, our model has 7% fewer parameters and is 21% (16%) faster on a CPU (GPU). …
OpenCL
OpenCL (Open Computing Language) is a framework for writing programs that execute across heterogeneous platforms consisting of central processing units (CPUs), graphics processing units (GPUs), digital signal processors (DSPs), field-programmable gate arrays (FPGAs) and other processors or hardware accelerators. OpenCL specifies programming languages (based on C99 and C++11) for programming these devices and application programming interfaces (APIs) to control the platform and execute programs on the compute devices. OpenCL provides a standard interface for parallel computing using task- and data-based parallelism.
OpenCL Performance Prediction using Architecture-Independent Features …
RL-GAN-Net
We present RL-GAN-Net, where a reinforcement learning (RL) agent provides fast and robust control of a generative adversarial network (GAN). Our framework is applied to point cloud shape completion that converts noisy, partial point cloud data into a high-fidelity completed shape by controlling the GAN. While a GAN is unstable and hard to train, we circumvent the problem by (1) training the GAN on the latent space representation whose dimension is reduced compared to the raw point cloud input and (2) using an RL agent to find the correct input to the GAN to generate the latent space representation of the shape that best fits the current input of incomplete point cloud. The suggested pipeline robustly completes point cloud with large missing regions. To the best of our knowledge, this is the first attempt to train an RL agent to control the GAN, which effectively learns the highly nonlinear mapping from the input noise of the GAN to the latent space of point cloud. The RL agent replaces the need for complex optimization and consequently makes our technique real time. Additionally, we demonstrate that our pipelines can be used to enhance the classification accuracy of point cloud with missing data. …
Independent-Component Layer (IC)
In this work, we propose a novel technique to boost training efficiency of a neural network. Our work is based on an excellent idea that whitening the inputs of neural networks can achieve a fast convergence speed. Given the well-known fact that independent components must be whitened, we introduce a novel Independent-Component (IC) layer before each weight layer, whose inputs would be made more independent. However, determining independent components is a computationally intensive task. To overcome this challenge, we propose to implement an IC layer by combining two popular techniques, Batch Normalization and Dropout, in a new manner that we can rigorously prove that Dropout can quadratically reduce the mutual information and linearly reduce the correlation between any pair of neurons with respect to the dropout layer parameter $p$. As demonstrated experimentally, the IC layer consistently outperforms the baseline approaches with more stable training process, faster convergence speed and better convergence limit on CIFAR10/100 and ILSVRC2012 datasets. The implementation of our IC layer makes us rethink the common practices in the design of neural networks. For example, we should not place Batch Normalization before ReLU since the non-negative responses of ReLU will make the weight layer updated in a suboptimal way, and we can achieve better performance by combining Batch Normalization and Dropout together as an IC layer. …
If you did not already know
16 Monday Nov 2020
Posted What is ...
in