Sogou Machine Reading Comprehension (SMRC) google
Machine reading comprehension have been intensively studied in recent years, and neural network-based models have shown dominant performances. In this paper, we present a Sogou Machine Reading Comprehension (SMRC) toolkit that can be used to provide the fast and efficient development of modern machine comprehension models, including both published models and original prototypes. To achieve this goal, the toolkit provides dataset readers, a flexible preprocessing pipeline, necessary neural network components, and built-in models, which make the whole process of data preparation, model construction, and training easier. …

Graph Neural Tangent Kernel (GNTK) google
While graph kernels (GKs) are easy to train and enjoy provable theoretical guarantees, their practical performances are limited by their expressive power, as the kernel function often depends on hand-crafted combinatorial features of graphs. Compared to graph kernels, graph neural networks (GNNs) usually achieve better practical performance, as GNNs use multi-layer architectures and non-linear activation functions to extract high-order information of graphs as features. However, due to the large number of hyper-parameters and the non-convex nature of the training procedure, GNNs are harder to train. Theoretical guarantees of GNNs are also not well-understood. Furthermore, the expressive power of GNNs scales with the number of parameters, and thus it is hard to exploit the full power of GNNs when computing resources are limited. The current paper presents a new class of graph kernels, Graph Neural Tangent Kernels (GNTKs), which correspond to \emph{infinitely wide} multi-layer GNNs trained by gradient descent. GNTKs enjoy the full expressive power of GNNs and inherit advantages of GKs. Theoretically, we show GNTKs provably learn a class of smooth functions on graphs. Empirically, we test GNTKs on graph classification datasets and show they achieve strong performance. …

Argument Component Detection (ACD) google
Argument component detection (ACD) is an important sub-task in argumentation mining. ACD aims at detecting and classifying different argument components in natural language texts. …

Push-Pull Layer google
We propose a new layer in Convolutional Neural Networks (CNNs) to increase their robustness to several types of noise perturbations of the input images. We call this a push-pull layer and compute its response as the combination of two half-wave rectified convolutions, with kernels of opposite polarity. It is based on a biologically-motivated non-linear model of certain neurons in the visual system that exhibit a response suppression phenomenon, known as push-pull inhibition. We validate our method by substituting the first convolutional layer of the LeNet-5 and WideResNet architectures with our push-pull layer. We train the networks on nonperturbed training images from the MNIST, CIFAR-10 and CIFAR-100 data sets, and test on images perturbed by noise that is unseen by the training process. We demonstrate that our push-pull layers contribute to a considerable improvement in robustness of classification of images perturbed by noise, while maintaining state-of-the-art performance on the original image classification task. …