MeshGAN google
Generative Adversarial Networks (GANs) are currently the method of choice for generating visual data. Certain GAN architectures and training methods have demonstrated exceptional performance in generating realistic synthetic images (in particular, of human faces). However, for 3D object, GANs still fall short of the success they have had with images. One of the reasons is due to the fact that so far GANs have been applied as 3D convolutional architectures to discrete volumetric representations of 3D objects. In this paper, we propose the first intrinsic GANs architecture operating directly on 3D meshes (named as MeshGAN). Both quantitative and qualitative results are provided to show that MeshGAN can be used to generate high-fidelity 3D face with rich identities and expressions. …

Facebook AI Research (FAIR) google
Facebook Artificial Intelligence Researchers (FAIR) seek to understand and develop systems with human-level intelligence by advancing the longer-term academic problems surrounding AI. Our research covers the full spectrum of topics related to AI, and to deriving knowledge from data: theory, algorithms, applications, software infrastructure and hardware infrastructure. Long-term objectives of understanding intelligence and building intelligent machines are bold and ambitious, and we know that making significant progress towards AI can’t be done in isolation. That’s why we actively engage with the research community through publications, open source software, participation in technical conferences and workshops, and collaborations with colleagues in academia.
Human and Smart Machine Co-Learning with Brain Computer Interface


Automatic Interactive Data Exploration (AIDE) google
In this paper, we argue that database systems be augmented with an automated data exploration service that methodically steers users through the data in a meaningful way. Such an automated system is crucial for deriving insights from complex datasets found in many big data applications such as scientific and healthcare applications as well as for reducing the human effort of data exploration. Towards this end, we present AIDE, an Automatic Interactive Data Exploration framework that assists users in discovering new interesting data patterns and eliminate expensive ad-hoc exploratory queries. AIDE relies on a seamless integration of classification algorithms and data management optimization techniques that collectively strive to accurately learn the user interests based on his relevance feedback on strategically collected samples. We present a number of exploration techniques as well as optimizations that minimize the number of samples presented to the user while offering interactive performance. AIDE can deliver highly accurate query predictions for very common conjunctive queries with small user effort while, given a reasonable number of samples, it can predict with high accuracy complex disjunctive queries. It provides interactive performance as it limits the user wait time per iteration of exploration to less than a few seconds. …

Censored Quantile Regression Forests google
Random forests are powerful non-parametric regression method but are severely limited in their usage in the presence of randomly censored observations, and naively applied can exhibit poor predictive performance due to the incurred biases. Based on a local adaptive representation of random forests, we develop its regression adjustment for randomly censored regression quantile models. Regression adjustment is based on new estimating equations that adapt to censoring and lead to quantile score whenever the data do not exhibit censoring. The proposed procedure named censored quantile regression forest, allows us to estimate quantiles of time-to-event without any parametric modeling assumption. We establish its consistency under mild model specifications. Numerical studies showcase a clear advantage of the proposed procedure. …