Pyramid Attention Network (PAN) google
A Pyramid Attention Network(PAN) is proposed to exploit the impact of global contextual information in semantic segmentation. Different from most existing works, we combine attention mechanism and spatial pyramid to extract precise dense features for pixel labeling instead of complicated dilated convolution and artificially designed decoder networks. Specifically, we introduce a Feature Pyramid Attention module to perform spatial pyramid attention structure on high-level output and combining global pooling to learn a better feature representation, and a Global Attention Upsample module on each decoder layer to provide global context as a guidance of low-level features to select category localization details. The proposed approach achieves state-of-the-art performance on PASCAL VOC 2012 and Cityscapes benchmarks with a new record of mIoU accuracy 84.0% on PASCAL VOC 2012, while training without COCO dataset. …

KeyVec google
Previous studies have demonstrated the empirical success of word embeddings in various applications. In this paper, we investigate the problem of learning distributed representations for text documents which many machine learning algorithms take as input for a number of NLP tasks. We propose a neural network model, KeyVec, which learns document representations with the goal of preserving key semantics of the input text. It enables the learned low-dimensional vectors to retain the topics and important information from the documents that will flow to downstream tasks. Our empirical evaluations show the superior quality of KeyVec representations in two different document understanding tasks. …

Feature Boosting and Suppression (FBS) google
Making deep convolutional neural networks more accurate typically comes at the cost of increased computational and memory resources. In this paper, we exploit the fact that the importance of features computed by convolutional layers is highly input-dependent, and propose feature boosting and suppression (FBS), a new method to predictively amplify salient convolutional channels and skip unimportant ones at run-time. FBS introduces small auxiliary connections to existing convolutional layers. In contrast to channel pruning methods which permanently remove channels, it preserves the full network structures and accelerates convolution by dynamically skipping unimportant input and output channels. FBS-augmented networks are trained with conventional stochastic gradient descent, making it readily available for many state-of-the-art CNNs. We compare FBS to a range of existing channel pruning and dynamic execution schemes and demonstrate large improvements on ImageNet classification. Experiments show that FBS can accelerate VGG-16 by $5\times$ and improve the speed of ResNet-18 by $2\times$, both with less than $0.6\%$ top-5 accuracy loss. …

Stochastic Ordering google
In probability theory and statistics, a stochastic order quantifies the concept of one random variable being ‘bigger’ than another. These are usually partial orders, so that one random variable A may be neither stochastically greater than, less than nor equal to another random variable B. Many different orders exist, which have different applications.
An Introduction to Stochastic Orders