Ramp-Based Twin Support Vector Clustering (RampTWSVC)
Traditional plane-based clustering methods measure the cost of within-cluster and between-cluster by quadratic, linear or some other unbounded functions, which may amplify the impact of cost. This letter introduces a ramp cost function into the plane-based clustering to propose a new clustering method, called ramp-based twin support vector clustering (RampTWSVC). RampTWSVC is more robust because of its boundness, and thus it is more easier to find the intrinsic clusters than other plane-based clustering methods. The non-convex programming problem in RampTWSVC is solved efficiently through an alternating iteration algorithm, and its local solution can be obtained in a finite number of iterations theoretically. In addition, the nonlinear manifold-based formation of RampTWSVC is also proposed by kernel trick. Experimental results on several benchmark datasets show the better performance of our RampTWSVC compared with other plane-based clustering methods. …

Sine-Cosine Algorithm (SCA)
This paper proposes a novel population-based optimization algorithm called Sine Cosine Algorithm (SCA) for solving optimization problems. The SCA creates multiple initial random candidate solutions and requires them to fluctuate outwards or towards the best solution using a mathematical model based on sine and cosine functions. Several random and adaptive variables also are integrated to this algorithm to emphasize exploration and exploitation of the search space in different milestones of optimization. The performance of SCA is benchmarked in three test phases. Firstly, a set of well-known test cases including unimodal, multi-modal, and composite functions are employed to test exploration, exploitation, local optima avoidance, and convergence of SCA. Secondly, several performance metrics (search history, trajectory, average fitness of solutions, and the best solution during optimization) are used to qualitatively observe and confirm the performance of SCA on shifted two-dimensional test functions. Finally, the cross-section of an aircraft’s wing is optimized by SCA as a real challenging case study to verify and demonstrate the performance of this algorithm in practice. The results of test functions and performance metrics prove that the algorithm proposed is able to explore different regions of a search space, avoid local optima, converge towards the global optimum, and exploit promising regions of a search space during optimization effectively. The SCA algorithm obtains a smooth shape for the airfoil with a very low drag, which demonstrates that this algorithm can highly be effective in solving real problems with constrained and unknown search spaces. Note that the source codes of the SCA algorithm are publicly available at http://…/SCA.html.

vitrivr
The growth of multimedia collections – in terms of size, heterogeneity, and variety of media types – necessitates systems that are able to conjointly deal with several forms of media, especially when it comes to searching for particular objects. However, existing retrieval systems are organized in silos and treat different media types separately. As a consequence, retrieval across media types is either not supported at all or subject to major limitations. In this paper, we present vitrivr, a content-based multimedia information retrieval stack. As opposed to the keyword search approach implemented by most media management systems, vitrivr makes direct use of the object’s content to facilitate different types of similarity search, such as Query-by-Example or Query-by-Sketch, for and, most importantly, across different media types – namely, images, audio, videos, and 3D models. Furthermore, we introduce a new web-based user interface that enables easy-to-use, multimodal retrieval from and browsing in mixed media collections. The effectiveness of vitrivr is shown on the basis of a user study that involves different query and media types. To the best of our knowledge, the full vitrivr stack is unique in that it is the first multimedia retrieval system that seamlessly integrates support for four different types of media. As such, it paves the way towards an all-purpose, content-based multimedia information retrieval system. …

Momentum-added Stochastic Solver (MaSS)
In this paper we introduce MaSS (Momentum-added Stochastic Solver), an accelerated SGD method for optimizing over-parameterized networks. Our method is simple and efficient to implement and does not require changing parameters or computing full gradients in the course of optimization. We provide a detailed theoretical analysis for convergence and parameter selection including their dependence on the mini-batch size in the quadratic case. We also provide theoretical convergence results for a more general convex setting. We provide an experimental evaluation showing strong performance of our method in comparison to Adam and SGD for several standard architectures of deep networks including ResNet, convolutional and fully connected networks. We also show its performance for convex kernel machines. …