Triangle Lasso
Recently, network lasso has drawn many attentions due to its remarkable performance on simultaneous clustering and optimization. However, it usually suffers from the imperfect data (noise, missing values etc), and yields sub-optimal solutions. The reason is that it finds the similar instances according to their features directly, which is usually impacted by the imperfect data, and thus returns sub-optimal results. In this paper, we propose triangle lasso to avoid its disadvantage. Triangle lasso finds the similar instances according to their neighbours. If two instances have many common neighbours, they tend to become similar. Although some instances are profiled by the imperfect data, it is still able to find the similar counterparts. Furthermore, we develop an efficient algorithm based on Alternating Direction Method of Multipliers (ADMM) to obtain a moderately accurate solution. In addition, we present a dual method to obtain the accurate solution with the low additional time consumption. We demonstrate through extensive numerical experiments that triangle lasso is robust to the imperfect data. It usually yields a better performance than the state-of-the-art method when performing data analysis tasks in practical scenarios. …
Dilated-Residual U-Net Deep Learning Network (DRUNET)
Given that the neural and connective tissues of the optic nerve head (ONH) exhibit complex morphological changes with the development and progression of glaucoma, their simultaneous isolation from optical coherence tomography (OCT) images may be of great interest for the clinical diagnosis and management of this pathology. A deep learning algorithm was designed and trained to digitally stain (i.e. highlight) 6 ONH tissue layers by capturing both the local (tissue texture) and contextual information (spatial arrangement of tissues). The overall dice coefficient (mean of all tissues) was $0.91 \pm 0.05$ when assessed against manual segmentations performed by an expert observer. We offer here a robust segmentation framework that could be extended for the automated parametric study of the ONH tissues. …
Fusion Discriminator
We propose the fusion discriminator, a single unified framework for incorporating conditional information into a generative adversarial network (GAN) for a variety of distinct structured prediction tasks, including image synthesis, semantic segmentation, and depth estimation. Much like commonly used convolutional neural network — conditional Markov random field (CNN-CRF) models, the proposed method is able to enforce higher-order consistency in the model, but without being limited to a very specific class of potentials. The method is conceptually simple and flexible, and our experimental results demonstrate improvement on several diverse structured prediction tasks. …
Conditional BEKK matrix-F
We propose a new Conditional BEKK matrix-F (CBF) model for the time-varying realized covariance (RCOV) matrices. This CBF model is capable of capturing heavy-tailed RCOV, which is an important stylized fact but could not be handled adequately by the Wishart-based models. To further mimic the long memory feature of the RCOV, a special CBF model with the conditional heterogeneous autoregressive (HAR) structure is introduced. Moreover, we give a systematical study on the probabilistic properties and statistical inferences of the CBF model, including exploring its stationarity, establishing the asymptotics of its maximum likelihood estimator, and giving some new inner-product-based tests for its model checking. In order to handle a large dimensional RCOV matrix, we construct two reduced CBF models — the variance-target CBF model (for moderate but fixed dimensional RCOV matrix) and the factor CBF model (for high dimensional RCOV matrix). For both reduced models, the asymptotic theory of the estimated parameters is derived. The importance of our entire methodology is illustrated by simulation results and two real examples. …
If you did not already know
02 Friday Oct 2020
Posted What is ...
in