Moving Horizon Estimation google
Moving horizon estimation (MHE) is an optimization approach that uses a series of measurements observed over time, containing noise (random variations) and other inaccuracies, and produces estimates of unknown variables or parameters. Unlike deterministic approaches like the Kalman filter, MHE requires an iterative approach that relies on linear programming or nonlinear programming solvers to find a solution. MHE reduces to the Kalman filter under certain simplifying conditions. A critical evaluation of the extended Kalman filter and MHE found improved performance of MHE with the only cost of improvement being the increased computational expense. Because of the computational expense, MHE has generally been applied to systems where there are greater computational resources and moderate to slow system dynamics. However, in the literature there are some methods to accelerate this method. …

Machine Learning AUtomation Toolbox (MLaut) google
In this paper we present MLaut (Machine Learning AUtomation Toolbox) for the python data science ecosystem. MLaut automates large-scale evaluation and benchmarking of machine learning algorithms on a large number of datasets. MLaut provides a high-level workflow interface to machine algorithm algorithms, implements a local back-end to a database of dataset collections, trained algorithms, and experimental results, and provides easy-to-use interfaces to the scikit-learn and keras modelling libraries. Experiments are easy to set up with default settings in a few lines of code, while remaining fully customizable to the level of hyper-parameter tuning, pipeline composition, or deep learning architecture. As a principal test case for MLaut, we conducted a large-scale supervised classification study in order to benchmark the performance of a number of machine learning algorithms – to our knowledge also the first larger-scale study on standard supervised learning data sets to include deep learning algorithms. While corroborating a number of previous findings in literature, we found (within the limitations of our study) that deep neural networks do not perform well on basic supervised learning, i.e., outside the more specialized, image-, audio-, or text-based tasks. …

Graph Weighted Model (GWM) google
Graph Weighted Models (GWMs) have recently been proposed as a natural generalization of weighted automata over strings and trees to arbitrary families of labeled graphs (and hypergraphs). A GWM generically associates a labeled graph with a tensor network and computes a value by successive contractions directed by its edges. …

Gluon Time Series google
We introduce Gluon Time Series (GluonTS)\footnote{\url{https://gluon-ts.mxnet.io}}, a library for deep-learning-based time series modeling. GluonTS simplifies the development of and experimentation with time series models for common tasks such as forecasting or anomaly detection. It provides all necessary components and tools that scientists need for quickly building new models, for efficiently running and analyzing experiments and for evaluating model accuracy. …