Personalized Neural Embedding (PNE)
Collaborative filtering (CF) is a core technique for recommender systems. Traditional CF approaches exploit user-item relations (e.g., clicks, likes, and views) only and hence they suffer from the data sparsity issue. Items are usually associated with unstructured text such as article abstracts and product reviews. We develop a Personalized Neural Embedding (PNE) framework to exploit both interactions and words seamlessly. We learn such embeddings of users, items, and words jointly, and predict user preferences on items based on these learned representations. PNE estimates the probability that a user will like an item by two terms—behavior factors and semantic factors. On two real-world datasets, PNE shows better performance than four state-of-the-art baselines in terms of three metrics. We also show that PNE learns meaningful word embeddings by visualization. …
Camelot
Camelot is a Python library that makes it easy for anyone to extract tables from PDF files! …
Tabular GAN (TGAN)
Generative adversarial networks (GANs) implicitly learn the probability distribution of a dataset and can draw samples from the distribution. This paper presents, Tabular GAN (TGAN), a generative adversarial network which can generate tabular data like medical or educational records. Using the power of deep neural networks, TGAN generates high-quality and fully synthetic tables while simultaneously generating discrete and continuous variables. When we evaluate our model on three datasets, we find that TGAN outperforms conventional statistical generative models in both capturing the correlation between columns and scaling up for large datasets. …
In-Edge AI
Recently, along with the rapid development of mobile communication technology, edge computing theory and techniques have been attracting more and more attentions from global researchers and engineers, which can significantly bridge the capacity of cloud and requirement of devices by the network edges, and thus can accelerate the content deliveries and improve the quality of mobile services. In order to bring more intelligence to the edge systems, compared to traditional optimization methodology, and driven by the current deep learning techniques, we propose to integrate the Deep Reinforcement Learning techniques and Federated Learning framework with the mobile edge systems, for optimizing the mobile edge computing, caching and communication. And thus, we design the ‘In-Edge AI’ framework in order to intelligently utilize the collaboration among devices and edge nodes to exchange the learning parameters for a better training and inference of the models, and thus to carry out dynamic system-level optimization and application-level enhancement while reducing the unnecessary system communication load. ‘In-Edge AI’ is evaluated and proved to have near-optimal performance but relatively low overhead of learning, while the system is cognitive and adaptive to the mobile communication systems. Finally, we discuss several related challenges and opportunities for unveiling a promising upcoming future of ‘In-Edge AI’. …
If you did not already know
29 Tuesday Sep 2020
Posted What is ...
in