Distribution Regression Network (DRN) google
We introduce our Distribution Regression Network (DRN) which performs regression from input probability distributions to output probability distributions. Compared to existing methods, DRN learns with fewer model parameters and easily extends to multiple input and multiple output distributions. On synthetic and real-world datasets, DRN performs similarly or better than the state-of-the-art. Furthermore, DRN generalizes the conventional multilayer perceptron (MLP). In the framework of MLP, each node encodes a real number, whereas in DRN, each node encodes a probability distribution. …

Recurrence Plot (RP) google
In descriptive statistics and chaos theory, a recurrence plot (RP) is a plot showing, for a given moment in time, the times at which a phase space trajectory visits roughly the same area in the phase space. …

Multi-Dimensional Utility-Oriented Sequential Useful Patterns (MDUS) google
Knowledge extraction from database is the fundamental task in database and data mining community, which has been applied to a wide range of real-world applications and situations. Different from the support-based mining models, the utility-oriented mining framework integrates the utility theory to provide more informative and useful patterns. Time-dependent sequence data is commonly seen in real life. Sequence data has been widely utilized in many applications, such as analyzing sequential user behavior on the Web, influence maximization, route planning, and targeted marketing. Unfortunately, all the existing algorithms lose sight of the fact that the processed data not only contain rich features (e.g., occur quantity, risk, profit, etc.), but also may be associated with multi-dimensional auxiliary information, e.g., transaction sequence can be associated with purchaser profile information. In this paper, we first formulate the problem of utility mining across multi-dimensional sequences, and propose a novel framework named MDUS to extract Multi-Dimensional Utility-oriented Sequential useful patterns. Two algorithms respectively named MDUS_EM and MDUS_SD are presented to address the formulated problem. The former algorithm is based on database transformation, and the later one performs pattern joins and a searching method to identify desired patterns across multi-dimensional sequences. Extensive experiments are carried on five real-life datasets and one synthetic dataset to show that the proposed algorithms can effectively and efficiently discover the useful knowledge from multi-dimensional sequential databases. Moreover, the MDUS framework can provide better insight, and it is more adaptable to real-life situations than the current existing models. …

MnasNet google
Designing convolutional neural networks (CNN) models for mobile devices is challenging because mobile models need to be small and fast, yet still accurate. Although significant effort has been dedicated to design and improve mobile models on all three dimensions, it is challenging to manually balance these trade-offs when there are so many architectural possibilities to consider. In this paper, we propose an automated neural architecture search approach for designing resource-constrained mobile CNN models. We propose to explicitly incorporate latency information into the main objective so that the search can identify a model that achieves a good trade-off between accuracy and latency. Unlike in previous work, where mobile latency is considered via another, often inaccurate proxy (e.g., FLOPS), in our experiments, we directly measure real-world inference latency by executing the model on a particular platform, e.g., Pixel phones. To further strike the right balance between flexibility and search space size, we propose a novel factorized hierarchical search space that permits layer diversity throughout the network. Experimental results show that our approach consistently outperforms state-of-the-art mobile CNN models across multiple vision tasks. On the ImageNet classification task, our model achieves 74.0% top-1 accuracy with 76ms latency on a Pixel phone, which is 1.5x faster than MobileNetV2 (Sandler et al. 2018) and 2.4x faster than NASNet (Zoph et al. 2018) with the same top-1 accuracy. On the COCO object detection task, our model family achieves both higher mAP quality and lower latency than MobileNets. …