Hill Climbing google
In computer science, hill climbing is a mathematical optimization technique which belongs to the family of local search. It is an iterative algorithm that starts with an arbitrary solution to a problem, then attempts to find a better solution by incrementally changing a single element of the solution. If the change produces a better solution, an incremental change is made to the new solution, repeating until no further improvements can be found. For example, hill climbing can be applied to the travelling salesman problem. It is easy to find an initial solution that visits all the cities but will be very poor compared to the optimal solution. The algorithm starts with such a solution and makes small improvements to it, such as switching the order in which two cities are visited. Eventually, a much shorter route is likely to be obtained. Hill climbing is good for finding a local optimum (a solution that cannot be improved by considering a neighbouring configuration) but it is not necessarily guaranteed to find the best possible solution (the global optimum) out of all possible solutions (the search space). In convex problems, hill-climbing is optimal. Examples of algorithms that solve convex problems by hill-climbing include the simplex algorithm for linear programming and binary search. The characteristic that only local optima are guaranteed can be cured by using restarts (repeated local search), or more complex schemes based on iterations, like iterated local search, on memory, like reactive search optimization and tabu search, or memory-less stochastic modifications, like simulated annealing. The relative simplicity of the algorithm makes it a popular first choice amongst optimizing algorithms. It is used widely in artificial intelligence, for reaching a goal state from a starting node. Choice of next node and starting node can be varied to give a list of related algorithms. Although more advanced algorithms such as simulated annealing or tabu search may give better results, in some situations hill climbing works just as well. Hill climbing can often produce a better result than other algorithms when the amount of time available to perform a search is limited, such as with real-time systems. It is an anytime algorithm: it can return a valid solution even if it’s interrupted at any time before it ends. …

Information-Directed Sampling (IDS) google
Efficient exploration remains a major challenge for reinforcement learning. One reason is that the variability of the returns often depends on the current state and action, and is therefore heteroscedastic. Classical exploration strategies such as upper confidence bound algorithms and Thompson sampling fail to appropriately account for heteroscedasticity, even in the bandit setting. Motivated by recent findings that address this issue in bandits, we propose to use Information-Directed Sampling (IDS) for exploration in reinforcement learning. As our main contribution, we build on recent advances in distributional reinforcement learning and propose a novel, tractable approximation of IDS for deep Q-learning. The resulting exploration strategy explicitly accounts for both parametric uncertainty and heteroscedastic observation noise. We evaluate our method on Atari games and demonstrate a significant improvement over alternative approaches. …

Lottery Ticket Hypothesis google
Recent work on neural network pruning indicates that, at training time, neural networks need to be significantly larger in size than is necessary to represent the eventual functions that they learn. This paper articulates a new hypothesis to explain this phenomenon. This conjecture, which we term the ‘lottery ticket hypothesis,’ proposes that successful training depends on lucky random initialization of a smaller subcomponent of the network. Larger networks have more of these ‘lottery tickets,’ meaning they are more likely to luck out with a subcomponent initialized in a configuration amenable to successful optimization. This paper conducts a series of experiments with XOR and MNIST that support the lottery ticket hypothesis. In particular, we identify these fortuitously-initialized subcomponents by pruning low-magnitude weights from trained networks. We then demonstrate that these subcomponents can be successfully retrained in isolation so long as the subnetworks are given the same initializations as they had at the beginning of the training process. Initialized as such, these small networks reliably converge successfully, often faster than the original network at the same level of accuracy. However, when these subcomponents are randomly reinitialized or rearranged, they perform worse than the original network. In other words, large networks that train successfully contain small subnetworks with initializations conducive to optimization. The lottery ticket hypothesis and its connection to pruning are a step toward developing architectures, initializations, and training strategies that make it possible to solve the same problems with much smaller networks. …

Multi-Scale Gradients GAN (MSG-GAN) google
Generative Adversarial Network (GAN) which is widely used for Image synthesis via generative modelling suffers peculiarly from training instability. One of the known reasons for this instability is the passage of uninformative gradients from the Discriminator to the Generator due to learning imbalance between them during training. In this work, we propose Multi-Scale Gradients Generative Adversarial Network (MSG-GAN), a simplistic but effective technique for addressing this problem; by allowing the flow of gradients from the Discriminator to the Generator at multiple scales. This results in the Generator acquiring the ability to synthesize synchronized images at multiple resolutions simultaneously. We also highlight a suite of techniques that together buttress the stability of training without excessive hyperparameter tuning. Our MSG-GAN technique is a generic mathematical framework which has multiple instantiations. We present an intuitive form of this technique which uses the concatenation operation in the Discriminator computations and empirically validate it through experiments on the CelebA-HQ, CIFAR10 and Oxford102 flowers datasets and by comparing it with some of the current state-of-the-art techniques. …