Multi-vAlue Rule Set (MRS) google
We propose a Multi-vAlue Rule Set (MRS) model for in-hospital predicting patient mortality. Compared to rule sets built from single-valued rules, MRS adopts a more generalized form of association rules that allows multiple values in a condition. Rules of this form are more concise than classical single-valued rules in capturing and describing patterns in data. Our formulation also pursues a higher efficiency of feature utilization, which reduces possible cost in data collection and storage. We propose a Bayesian framework for formulating a MRS model and propose an efficient inference method for learning a maximum \emph{a posteriori}, incorporating theoretically grounded bounds to iteratively reduce the search space and improve the search efficiency. Experiments show that our model was able to achieve better performance than baseline method including the current system used by the hospital. …

Cascaded Multi-Scale Cross Network google
The deep convolutional neural networks have achieved significant improvements in accuracy and speed for single image super-resolution. However, as the depth of network grows, the information flow is weakened and the training becomes harder and harder. On the other hand, most of the models adopt a single-stream structure with which integrating complementary contextual information under different receptive fields is difficult. To improve information flow and to capture sufficient knowledge for reconstructing the high-frequency details, we propose a cascaded multi-scale cross network (CMSC) in which a sequence of subnetworks is cascaded to infer high resolution features in a coarse-to-fine manner. In each cascaded subnetwork, we stack multiple multi-scale cross (MSC) modules to fuse complementary multi-scale information in an efficient way as well as to improve information flow across the layers. Meanwhile, by introducing residual-features learning in each stage, the relative information between high-resolution and low-resolution features is fully utilized to further boost reconstruction performance. We train the proposed network with cascaded-supervision and then assemble the intermediate predictions of the cascade to achieve high quality image reconstruction. Extensive quantitative and qualitative evaluations on benchmark datasets illustrate the superiority of our proposed method over state-of-the-art super-resolution methods. …

Perturbed Model Validation (PMV) google
This paper introduces PMV (Perturbed Model Validation), a new technique to validate model relevance and detect overfitting or underfitting. PMV operates by injecting noise to the training data, re-training the model against the perturbed data, then using the training accuracy decrease rate to assess model relevance. A larger decrease rate indicates better concept-hypothesis fit. We realise PMV by using label flipping to inject noise, and evaluate it on four real-world datasets (breast cancer, adult, connect-4, and MNIST) and three synthetic datasets in the binary classification setting. The results reveal that PMV selects models more precisely and in a more stable way than cross-validation, and effectively detects both overfitting and underfitting. …

Turbo Filtering google
In this manuscript a method for developing novel filtering algorithms through the parallel concatenation of two Bayesian filters is illustrated. Our description of this method, called turbo filtering, is based on a new graphical model; this allows us to efficiently describe both the processing accomplished inside each of the constituent filter and the interactions between them. This model is exploited to develop two new filtering algorithms for conditionally linear Gaussian systems. Numerical results for a specific dynamic system evidence that such filters can achieve a better complexity-accuracy tradeoff than marginalized particle filtering. …