General Language Understanding Evaluation Benchmark (GLUE)
For natural language understanding (NLU) technology to be maximally useful, both practically and as a scientific object of study, it must be general: it must be able to process language in a way that is not exclusively tailored to any one specific task or dataset. In pursuit of this objective, we introduce the General Language Understanding Evaluation benchmark (GLUE), a tool for evaluating and analyzing the performance of models across a diverse range of existing NLU tasks. GLUE is model-agnostic, but it incentivizes sharing knowledge across tasks because certain tasks have very limited training data. We further provide a hand-crafted diagnostic test suite that enables detailed linguistic analysis of NLU models. We evaluate baselines based on current methods for multi-task and transfer learning and find that they do not immediately give substantial improvements over the aggregate performance of training a separate model per task, indicating room for improvement in developing general and robust NLU systems. …
Algorithmic Neural Network (AlgoNet)
Artificial neural networks revolutionized many areas of computer science in recent years since they provide solutions to a number of previously unsolved problems. On the other hand, for many problems, classic algorithms exist, which typically exceed the accuracy and stability of neural networks. To combine these two concepts, we present a new kind of neural networks—algorithmic neural networks (AlgoNets). These networks integrate smooth versions of classic algorithms and data structures into the topology of neural networks. A forward AlgoNet includes algorithmic layers into existing architectures while a backward AlgoNet can solve inverse problems without or with only weak supervision. In addition, we present the \texttt{algonet} package, a PyTorch based library that includes, inter alia, a smooth evaluated programming language, a smooth 3D mesh renderer, and smooth sorting algorithms. …
autoAx
Approximate computing is an emerging paradigm for developing highly energy-efficient computing systems such as various accelerators. In the literature, many libraries of elementary approximate circuits have already been proposed to simplify the design process of approximate accelerators. Because these libraries contain from tens to thousands of approximate implementations for a single arithmetic operation it is intractable to find an optimal combination of approximate circuits in the library even for an application consisting of a few operations. An open problem is ‘how to effectively combine circuits from these libraries to construct complex approximate accelerators’. This paper proposes a novel methodology for searching, selecting and combining the most suitable approximate circuits from a set of available libraries to generate an approximate accelerator for a given application. To enable fast design space generation and exploration, the methodology utilizes machine learning techniques to create computational models estimating the overall quality of processing and hardware cost without performing full synthesis at the accelerator level. Using the methodology, we construct hundreds of approximate accelerators (for a Sobel edge detector) showing different but relevant tradeoffs between the quality of processing and hardware cost and identify a corresponding Pareto-frontier. Furthermore, when searching for approximate implementations of a generic Gaussian filter consisting of 17 arithmetic operations, the proposed approach allows us to identify approximately $10^3$ highly important implementations from $10^{23}$ possible solutions in a few hours, while the exhaustive search would take four months on a high-end processor. …
wav2letter++
This paper introduces wav2letter++, the fastest open-source deep learning speech recognition framework. wav2letter++ is written entirely in C++, and uses the ArrayFire tensor library for maximum efficiency. Here we explain the architecture and design of the wav2letter++ system and compare it to other major open-source speech recognition systems. In some cases wav2letter++ is more than 2x faster than other optimized frameworks for training end-to-end neural networks for speech recognition. We also show that wav2letter++’s training times scale linearly to 64 GPUs, the highest we tested, for models with 100 million parameters. High-performance frameworks enable fast iteration, which is often a crucial factor in successful research and model tuning on new datasets and tasks.
Introducing Wav2letter++ …
If you did not already know
22 Tuesday Sep 2020
Posted What is ...
in