Expectation-Biasing
State-of-the-art forecasting methods using Recurrent Neural Net- works (RNN) based on Long-Short Term Memory (LSTM) cells have shown exceptional performance targeting short-horizon forecasts, e.g given a set of predictor features, forecast a target value for the next few time steps in the future. However, in many applications, the performance of these methods decays as the forecasting horizon extends beyond these few time steps. This paper aims to explore the challenges of long-horizon forecasting using LSTM networks. Here, we illustrate the long-horizon forecasting problem in datasets from neuroscience and energy supply management. We then propose expectation-biasing, an approach motivated by the literature of Dynamic Belief Networks, as a solution to improve long-horizon forecasting using LSTMs. We propose two LSTM architectures along with two methods for expectation biasing that significantly outperforms standard practice. …
Binary Weight and Hadamard-transformed Image Network (BWHIN)
Deep learning has made significant improvements at many image processing tasks in recent years, such as image classification, object recognition and object detection. Convolutional neural networks (CNN), which is a popular deep learning architecture designed to process data in multiple array form, show great success to almost all detection \& recognition problems and computer vision tasks. However, the number of parameters in a CNN is too high such that the computers require more energy and larger memory size. In order to solve this problem, we propose a novel energy efficient model Binary Weight and Hadamard-transformed Image Network (BWHIN), which is a combination of Binary Weight Network (BWN) and Hadamard-transformed Image Network (HIN). It is observed that energy efficiency is achieved with a slight sacrifice at classification accuracy. Among all energy efficient networks, our novel ensemble model outperforms other energy efficient models. …
Apache Pulsar
Pulsar is a distributed pub-sub messaging platform with a very flexible messaging model and an intuitive client API. …
TuckER
Knowledge graphs are structured representations of real world facts. However, they typically contain only a small subset of all possible facts. Link prediction is a task of inferring missing facts based on existing ones. We propose TuckER, a relatively simple but powerful linear model based on Tucker decomposition of the binary tensor representation of knowledge graph triples. TuckER outperforms all previous state-of-the-art models across standard link prediction datasets. We prove that TuckER is a fully expressive model, deriving the bound on its entity and relation embedding dimensionality for full expressiveness which is several orders of magnitude smaller than the bound of previous state-of-the-art models ComplEx and SimplE. We further show that several previously introduced linear models can be viewed as special cases of TuckER. …
If you did not already know
16 Wednesday Sep 2020
Posted What is ...
in
Pingback: If you did not already know |