Robust Semi-Supervised Adaptive Concept Factorization (RS2ACF)
Constrained Concept Factorization (CCF) yields the enhanced representation ability over CF by incorporating label information as additional constraints, but it cannot classify and group unlabeled data appropriately. Minimizing the difference between the original data and its reconstruction directly can enable CCF to model a small noisy perturbation, but is not robust to gross sparse errors. Besides, CCF cannot preserve the manifold structures in new representation space explicitly, especially in an adaptive manner. In this paper, we propose a joint label prediction based Robust Semi-Supervised Adaptive Concept Factorization (RS2ACF) framework. To obtain robust representation, RS2ACF relaxes the factorization to make it simultaneously stable to small entrywise noise and robust to sparse errors. To enrich prior knowledge to enhance the discrimination, RS2ACF clearly uses class information of labeled data and more importantly propagates it to unlabeled data by jointly learning an explicit label indicator for unlabeled data. By the label indicator, RS2ACF can ensure the unlabeled data of the same predicted label to be mapped into the same class in feature space. Besides, RS2ACF incorporates the joint neighborhood reconstruction error over the new representations and predicted labels of both labeled and unlabeled data, so the manifold structures can be preserved explicitly and adaptively in the representation space and label space at the same time. Owing to the adaptive manner, the tricky process of determining the neighborhood size or kernel width can be avoided. Extensive results on public databases verify that our RS2ACF can deliver state-of-the-art data representation, compared with other related methods. …
Probabilistic Data Structure
Probabilistic data structures are a group of data structures that are extremely useful for big data and streaming applications. Generally speaking, these data structures use hash functions to randomize and compactly represent a set of items. Collisions are ignored but errors can be well-controlled under certain threshold. Comparing with error-free approaches, these algorithms use much less memory and have constant query time. They usually support union and intersection operations and therefore can be easily parallelized.
http://…/Category:Probabilistic_data_structures …
SincNet
Deep learning is currently playing a crucial role toward higher levels of artificial intelligence. This paradigm allows neural networks to learn complex and abstract representations, that are progressively obtained by combining simpler ones. Nevertheless, the internal ‘black-box’ representations automatically discovered by current neural architectures often suffer from a lack of interpretability, making of primary interest the study of explainable machine learning techniques. This paper summarizes our recent efforts to develop a more interpretable neural model for directly processing speech from the raw waveform. In particular, we propose SincNet, a novel Convolutional Neural Network (CNN) that encourages the first layer to discover more meaningful filters by exploiting parametrized sinc functions. In contrast to standard CNNs, which learn all the elements of each filter, only low and high cutoff frequencies of band-pass filters are directly learned from data. This inductive bias offers a very compact way to derive a customized filter-bank front-end, that only depends on some parameters with a clear physical meaning. Our experiments, conducted on both speaker and speech recognition, show that the proposed architecture converges faster, performs better, and is more interpretable than standard CNNs. …
Transferlearning Oriented Minority Over-Sampling Technique (TOMO)
Cross-project defect prediction (CPDP) aims to predict defects of projects lacking training data by using prediction models trained on historical defect data from other projects. However, since the distribution differences between datasets from different projects, it is still a challenge to build high-quality CPDP models. Unfortunately, class imbalanced nature of software defect datasets further increases the difficulty. In this paper, we propose a transferlearning oriented minority over-sampling technique (TOMO) based feature weighting transfer naive Bayes (FWTNB) approach (TOMOFWTNB) for CPDP by considering both classimbalance and feature importance problems. Differing from traditional over-sampling techniques, TOMO not only can balance the data but reduce the distribution difference. And then FWTNB is used to further increase the similarity of two distributions. Experiments are performed on 11 public defect datasets. The experimental results show that (1) TOMO improves the average G-Measure by 23.7\%$\sim$41.8\%, and the average MCC by 54.2\%$\sim$77.8\%. (2) feature weighting (FW) strategy improves the average G-Measure by 11\%, and the average MCC by 29.2\%. (3) TOMOFWTNB improves the average G-Measure value by at least 27.8\%, and the average MCC value by at least 71.5\%, compared with existing state-of-theart CPDP approaches. It can be concluded that (1) TOMO is very effective for addressing class-imbalance problem in CPDP scenario; (2) our FW strategy is helpful for CPDP; (3) TOMOFWTNB outperforms previous state-of-the-art CPDP approaches. …
If you did not already know
09 Wednesday Sep 2020
Posted What is ...
in