Augmented k-means google
Identifying a set of homogeneous clusters in a heterogeneous dataset is one of the most important classes of problems in statistical modeling. In the realm of unsupervised partitional clustering, k-means is a very important algorithm for this. In this technical report, we develop a new k-means variant called Augmented k-means, which is a hybrid of k-means and logistic regression. During each iteration, logistic regression is used to predict the current cluster labels, and the cluster belonging probabilities are used to control the subsequent re-estimation of cluster means. Observations which can’t be firmly identified into clusters are excluded from the re-estimation step. This can be valuable when the data exhibit many characteristics of real datasets such as heterogeneity, non-sphericity, substantial overlap, and high scatter. Augmented k-means frequently outperforms k-means by more accurately classifying observations into known clusters and / or converging in fewer iterations. We demonstrate this on both simulated and real datasets. Our algorithm is implemented in Python and will be available with this report. …

DeepMNE google
Networks are ubiquitous structure that describes complex relationships between different entities in the real world. As a critical component of prediction task over nodes in networks, learning the feature representation of nodes has become one of the most active areas recently. Network Embedding, aiming to learn non-linear and low-dimensional feature representation based on network topology, has been proved to be helpful on tasks of network analysis, especially node classification. For many real-world systems, multiple types of relations are naturally represented by multiple networks. However, existing network embedding methods mainly focus on single network embedding and neglect the information shared among different networks. In this paper, we propose a novel multiple network embedding method based on semisupervised autoencoder, named DeepMNE, which captures complex topological structures of multi-networks and takes the correlation among multi-networks into account. We evaluate DeepMNE on the task of node classification with two real-world datasets. The experimental results demonstrate the superior performance of our method over four state-of-the-art algorithms. …

Spatio-TEmporal Fuzzy neural Network (STEF-Net) google
In spite of its importance, passenger demand prediction is a highly challenging problem, because the demand is simultaneously influenced by the complex interactions among many spatial and temporal factors and other external factors such as weather. To address this problem, we propose a Spatio-TEmporal Fuzzy neural Network (STEF-Net) to accurately predict passenger demands incorporating the complex interactions of all known important factors. We design an end-to-end learning framework with different neural networks modeling different factors. Specifically, we propose to capture spatio-temporal feature interactions via a convolutional long short-term memory network and model external factors via a fuzzy neural network that handles data uncertainty significantly better than deterministic methods. To keep the temporal relations when fusing two networks and emphasize discriminative spatio-temporal feature interactions, we employ a novel feature fusion method with a convolution operation and an attention layer. As far as we know, our work is the first to fuse a deep recurrent neural network and a fuzzy neural network to model complex spatial-temporal feature interactions with additional uncertain input features for predictive learning. Experiments on a large-scale real-world dataset show that our model achieves more than 10% improvement over the state-of-the-art approaches. …

Data Analysis Expressions (DAX) google
Data Analysis Expressions are a collection of functions that can be used to perform a task and return one or more values. Although this sounds very similar to any other programming language, DAX is only a formula or a query language. DAX was developed around 2009 by Microsoft to be used with Microsoft’s PowerPivot, which at that time was available as an Excel (2010) add-in. It is extremely popular today as it is now the language of choice for Power BI and is supported by Tabular SSAS as well. …