Internet of Things (IoT)
The Internet of Things (IoT) is the interconnection of uniquely identifiable embedded computing devices within the existing Internet infrastructure. Typically, IoT is expected to offer advanced connectivity of devices, systems, and services that goes beyond machine-to-machine communications (M2M) and covers a variety of protocols, domains, and applications. The interconnection of these embedded devices (including smart objects), is expected to usher in automation in nearly all fields, while also enabling advanced applications like a Smart Grid. Things, in the IoT, can refer to a wide variety of devices such as heart monitoring implants, biochip transponders on farm animals, automobiles with built-in sensors, or field operation devices that assist fire-fighters in search and rescue. Current market examples include smart thermostat systems and washer/dryers that utilize wifi for remote monitoring. …
q-Fair Federated Learning (q-FFL)
Federated learning involves training statistical models in massive, heterogeneous networks. Naively minimizing an aggregate loss function in such a network may disproportionately advantage or disadvantage some of the devices. In this work, we propose q-Fair Federated Learning (q-FFL), a novel optimization objective inspired by resource allocation in wireless networks that encourages a more fair (i.e., lower-variance) accuracy distribution across devices in federated networks. To solve q-FFL, we devise a communication-efficient method, q-FedAvg, that is suited to federated networks. We validate both the effectiveness of q-FFL and the efficiency of q-FedAvg on a suite of federated datasets, and show that q-FFL (along with q-FedAvg) outperforms existing baselines in terms of the resulting fairness, flexibility, and efficiency. …
LMKL-Net
In this paper we propose solving localized multiple kernel learning (LMKL) using LMKL-Net, a feedforward deep neural network. In contrast to previous works, as a learning principle we propose {\em parameterizing} both the gating function for learning kernel combination weights and the multiclass classifier in LMKL using an attentional network (AN) and a multilayer perceptron (MLP), respectively. In this way we can learn the (nonlinear) decision function in LMKL (approximately) by sequential applications of AN and MLP. Empirically on benchmark datasets we demonstrate that overall LMKL-Net can not only outperform the state-of-the-art MKL solvers in terms of accuracy, but also be trained about {\em two orders of magnitude} faster with much smaller memory footprint for large-scale learning. …
ELASTIC
Scale variation has been a challenge from traditional to modern approaches in computer vision. Most solutions to scale issues have similar theme: a set of intuitive and manually designed policies that are generic and fixed (e.g. SIFT or feature pyramid). We argue that the scale policy should be learned from data. In this paper, we introduce ELASTIC, a simple, efficient and yet very effective approach to learn instance-specific scale policy from data. We formulate the scaling policy as a non-linear function inside the network’s structure that (a) is learned from data, (b) is instance specific, (c) does not add extra computation, and (d) can be applied on any network architecture. We applied ELASTIC to several state-of-the-art network architectures and showed consistent improvement without extra (sometimes even lower) computation on ImageNet classification, MSCOCO multi-label classification, and PASCAL VOC semantic segmentation. Our results show major improvement for images with scale challenges e.g. images with several small objects or objects with large scale variations. Our code and models will be publicly available soon. …
If you did not already know
02 Wednesday Sep 2020
Posted What is ...
in
Pingback: If you did not already know |