AutoAssist
Deep neural networks have yielded superior performance in many applications; however, the gradient computation in a deep model with millions of instances lead to a lengthy training process even with modern GPU/TPU hardware acceleration. In this paper, we propose AutoAssist, a simple framework to accelerate training of a deep neural network. Typically, as the training procedure evolves, the amount of improvement in the current model by a stochastic gradient update on each instance varies dynamically. In AutoAssist, we utilize this fact and design a simple instance shrinking operation, which is used to filter out instances with relatively low marginal improvement to the current model; thus the computationally intensive gradient computations are performed on informative instances as much as possible. We prove that the proposed technique outperforms vanilla SGD with existing importance sampling approaches for linear SVM problems, and establish an O(1/k) convergence for strongly convex problems. In order to apply the proposed techniques to accelerate training of deep models, we propose to jointly train a very lightweight Assistant network in addition to the original deep network referred to as Boss. The Assistant network is designed to gauge the importance of a given instance with respect to the current Boss such that a shrinking operation can be applied in the batch generator. With careful design, we train the Boss and Assistant in a nonblocking and asynchronous fashion such that overhead is minimal. We demonstrate that AutoAssist reduces the number of epochs by 40% for training a ResNet to reach the same test accuracy on an image classification data set and saves 30% training time needed for a transformer model to yield the same BLEU scores on a translation dataset. …
ForGAN
Time series forecasting is one of the challenging problems for humankind. Traditional forecasting methods using mean regression models have severe shortcomings in reflecting real-world fluctuations. While new probabilistic methods rush to rescue, they fight with technical difficulties like quantile crossing or selecting a prior distribution. To meld the different strengths of these fields while avoiding their weaknesses as well as to push the boundary of the state-of-the-art, we introduce ForGAN – one step ahead probabilistic forecasting with generative adversarial networks. ForGAN utilizes the power of the conditional generative adversarial network to learn the data generating distribution and compute probabilistic forecasts from it. We argue how to evaluate ForGAN in opposition to regression methods. To investigate probabilistic forecasting of ForGAN, we create a new dataset and demonstrate our method abilities on it. This dataset will be made publicly available for comparison. Furthermore, we test ForGAN on two publicly available datasets, namely Mackey-Glass dataset and Internet traffic dataset (A5M) where the impressive performance of ForGAN demonstrate its high capability in forecasting future values. …
Probabilistic Database
Most real databases contain data whose correctness is uncertain. In order to work with such data, there is a need to quantify the integrity of the data. This is achieved by using probabilistic databases. A probabilistic database is an uncertain database in which the possible worlds have associated probabilities. Probabilistic database management systems are currently an active area of research. ‘While there are currently no commercial probabilistic database systems, several research prototypes exist…’ Probabilistic databases distinguish between the logical data model and the physical representation of the data much like relational databases do in the ANSI-SPARC Architecture. In probabilistic databases this is even more crucial since such databases have to represent very large numbers of possible worlds, often exponential in the size of one world (a classical database), succinctly.
On Constrained Open-World Probabilistic Databases …
ProBO
Optimizing an expensive-to-query function is a common task in science and engineering, where it is beneficial to keep the number of queries to a minimum. A popular strategy is Bayesian optimization (BO), which leverages probabilistic models for this task. Most BO today uses Gaussian processes (GPs), or a few other surrogate models. However, there is a broad set of Bayesian modeling techniques that we may want to use to capture complex systems and reduce the number of queries. Probabilistic programs (PPs) are modern tools that allow for flexible model composition, incorporation of prior information, and automatic inference. In this paper, we develop ProBO, a framework for BO using only standard operations common to most PPs. This allows a user to drop in an arbitrary PP implementation and use it directly in BO. To do this, we describe black box versions of popular acquisition functions that can be used in our framework automatically, without model-specific derivation, and show how to optimize these functions. We also introduce a model, which we term the Bayesian Product of Experts, that integrates into ProBO and can be used to combine information from multiple models implemented with different PPs. We show empirical results using multiple PP implementations, and compare against standard BO methods. …
If you did not already know
24 Monday Aug 2020
Posted What is ...
in