Out-of-Distribution (OOD) google
Deep learning has significantly improved the performance of machine learning systems in fields such as computer vision, natural language processing, and speech. In turn, these algorithms are integral in commercial applications such as autonomous driving, medical diagnosis, and web search. In these applications, it is critical to detect sensor failures, unusual environments, novel biological phenomena, and cyber attacks. To accomplish this, systems must be capable of detecting when inputs are anomalous or out-of-distribution (OOD) …

Matchbox google
We present a probabilistic model for generating personalised recommendations of items to users of a web service. The Matchbox system makes use of content information in the form of user and item meta data in combination with collaborative filtering information from previous user behavior in order to predict the value of an item for a user. Users and items are represented by feature vectors which are mapped into a low-dimensional ‘trait space’ in which similarity is measured in terms of inner products. The model can be trained from different types of feedback in order to learn user-item preferences. Here we present three alternatives: direct observation of an absolute rating each user gives to some items, observation of a binary preference (like/ don’t like) and observation of a set of ordinal ratings on a userspecific scale. Efficient inference is achieved by approximate message passing involving a combination of Expectation Propagation (EP) and Variational Message Passing. We also include a dynamics model which allows an item’s popularity, a user’s taste or a user’s personal rating scale to drift over time. By using Assumed-Density Filtering (ADF) for training, the model requires only a single pass through the training data. This is an on-line learning algorithm capable of incrementally taking account of new data so the system can immediately reflect the latest user preferences. We evaluate the performance of the algorithm on the MovieLens and Netflix data sets consisting of approximately 1,000,000 and 100,000,000 ratings respectively. This demonstrates that training the model using the on-line ADF approach yields state-of-the-art performance with the option of improving performance further if computational resources are available by performing multiple EP passes over the training data. …

Adversarial Discriminative Domain Generalization (ADDoG) google
Automatic speech emotion recognition provides computers with critical context to enable user understanding. While methods trained and tested within the same dataset have been shown successful, they often fail when applied to unseen datasets. To address this, recent work has focused on adversarial methods to find more generalized representations of emotional speech. However, many of these methods have issues converging, and only involve datasets collected in laboratory conditions. In this paper, we introduce Adversarial Discriminative Domain Generalization (ADDoG), which follows an easier to train ‘meet in the middle’ approach. The model iteratively moves representations learned for each dataset closer to one another, improving cross-dataset generalization. We also introduce Multiclass ADDoG, or MADDoG, which is able to extend the proposed method to more than two datasets, simultaneously. Our results show consistent convergence for the introduced methods, with significantly improved results when not using labels from the target dataset. We also show how, in most cases, ADDoG and MADDoG can be used to improve upon baseline state-of-the-art methods when target dataset labels are added and in-the-wild data are considered. Even though our experiments focus on cross-corpus speech emotion, these methods could be used to remove unwanted factors of variation in other settings. …

Graphical Inference in Observed-Hidden Variable Merged Seeded Network (GI-OHMS) google
Discovery of communities in complex networks is a topic of considerable recent interest within the complex systems community. Due to the dynamic and rapidly evolving nature of large-scale networks, like online social networks, the notion of stronger local and global interactions among the nodes in communities has become harder to capture. In this paper, we present a novel graphical inference method – GI-OHMS (Graphical Inference in Observed-Hidden variable Merged Seeded network) to solve the problem of overlapping community detection. The novelty of our approach is in transforming the complex and dense network of interest into an observed-hidden merged seeded(OHMS) network, which preserves the important community properties of the network. We further utilize a graphical inference method (Bayesian Markov Random Field) to extract communities. The superiority of our approach lies in two main observations: 1) The extracted OHMS network excludes many weaker connections, thus leading to a higher accuracy of inference 2) The graphical inference step operates on a smaller network, thus having much lower execution time. We demonstrate that our method outperforms the accuracy of other baseline algorithms like OSLOM, DEMON, and LEMON. To further improve execution time, we have a multi-threaded implementation and demonstrate significant speed-up compared to state-of-the-art algorithms. …