ReCoRD google
We present a large-scale dataset, ReCoRD, for machine reading comprehension requiring commonsense reasoning. Experiments on this dataset demonstrate that the performance of state-of-the-art MRC systems fall far behind human performance. ReCoRD represents a challenge for future research to bridge the gap between human and machine commonsense reading comprehension. ReCoRD is available at http://…/record.

Progressive Augmentation of GAN (PA-GAN) google
Training of Generative Adversarial Networks (GANs) is notoriously fragile, which partially attributed to the discriminator performing well very quickly; its loss converges to zero, providing no reliable backpropagation signal to the generator. In this work we introduce a new technique – progressive augmentation of GANs (PA-GAN) – that helps to mitigate this issue and thus improve the GAN training. The key idea is to gradually increase the task difficulty of the discriminator by progressively augmenting its input or feature space, enabling continuous learning of the generator. We show that the proposed progressive augmentation preserves the original GAN objective, does not bias the optimality of the discriminator and encourages the healthy competition between the generator and discriminator, leading to a better-performing generator. We experimentally demonstrate the effectiveness of PA-GAN across different architectures and on multiple benchmarks for the image generation task. …

Dynamic Memory Generative Adversarial Network (DM-GAN) google
In this paper, we focus on generating realistic images from text descriptions. Current methods first generate an initial image with rough shape and color, and then refine the initial image to a high-resolution one. Most existing text-to-image synthesis methods have two main problems. (1) These methods depend heavily on the quality of the initial images. If the initial image is not well initialized, the following processes can hardly refine the image to a satisfactory quality. (2) Each word contributes a different level of importance when depicting different image contents, however, unchanged text representation is used in existing image refinement processes. In this paper, we propose the Dynamic Memory Generative Adversarial Network (DM-GAN) to generate high-quality images. The proposed method introduces a dynamic memory module to refine fuzzy image contents, when the initial images are not well generated. A memory writing gate is designed to select the important text information based on the initial image content, which enables our method to accurately generate images from the text description. We also utilize a response gate to adaptively fuse the information read from the memories and the image features. We evaluate the DM-GAN model on the Caltech-UCSD Birds 200 dataset and the Microsoft Common Objects in Context dataset. Experimental results demonstrate that our DM-GAN model performs favorably against the state-of-the-art approaches. …

Deep Learning Model Predictive Control (DeepMPC) google
The control of complex systems is of critical importance in many branches of science, engineering, and industry. Controlling an unsteady fluid flow is particularly important, as flow control is a key enabler for technologies in energy (e.g., wind, tidal, and combustion), transportation (e.g., planes, trains, and automobiles), security (e.g., tracking airborne contamination), and health (e.g., artificial hearts and artificial respiration). However, the high-dimensional, nonlinear, and multi-scale dynamics make real-time feedback control infeasible. Fortunately, these high-dimensional systems exhibit dominant, low-dimensional patterns of activity that can be exploited for effective control in the sense that knowledge of the entire state of a system is not required. Advances in machine learning have the potential to revolutionize flow control given its ability to extract principled, low-rank feature spaces characterizing such complex systems. We present a novel deep learning model predictive control (DeepMPC) framework that exploits low-rank features of the flow in order to achieve considerable improvements to control performance. Instead of predicting the entire fluid state, we use a recurrent neural network (RNN) to accurately predict the control relevant quantities of the system. The RNN is then embedded into a MPC framework to construct a feedback loop, and incoming sensor data is used to perform online updates to improve prediction accuracy. The results are validated using varying fluid flow examples of increasing complexity. …