LGM-Net
In this work, we propose a novel meta-learning approach for few-shot classification, which learns transferable prior knowledge across tasks and directly produces network parameters for similar unseen tasks with training samples. Our approach, called LGM-Net, includes two key modules, namely, TargetNet and MetaNet. The TargetNet module is a neural network for solving a specific task and the MetaNet module aims at learning to generate functional weights for TargetNet by observing training samples. We also present an intertask normalization strategy for the training process to leverage common information shared across different tasks. The experimental results on Omniglot and miniImageNet datasets demonstrate that LGM-Net can effectively adapt to similar unseen tasks and achieve competitive performance, and the results on synthetic datasets show that transferable prior knowledge is learned by the MetaNet module via mapping training data to functional weights. LGM-Net enables fast learning and adaptation since no further tuning steps are required compared to other meta-learning approaches. …
PsiRec
We propose PsiRec, a novel user preference propagation recommender that incorporates pseudo-implicit feedback for enriching the original sparse implicit feedback dataset. Three of the unique characteristics of PsiRec are: (i) it views user-item interactions as a bipartite graph and models pseudo-implicit feedback from this perspective; (ii) its random walks-based approach extracts graph structure information from this bipartite graph, toward estimating pseudo-implicit feedback; and (iii) it adopts a Skip-gram inspired measure of confidence in pseudo-implicit feedback that captures the pointwise mutual information between users and items. This pseudo-implicit feedback is ultimately incorporated into a new latent factor model to estimate user preference in cases of extreme sparsity. PsiRec results in improvements of 21.5% and 22.7% in terms of Precision@10 and Recall@10 over state-of-the-art Collaborative Denoising Auto-Encoders. Our implementation is available at https://…/PsiRecICDM2018. …
Gumbel Graph Network
In this work, we present Gumbel Graph Network, a model-free deep learning framework for dynamics learning and network reconstruction from the observed time series data. Our method requires no prior knowledge about underlying dynamics and has shown the state-of-the-art performance in three typical dynamical systems on complex networks. …
Fuzzy GP Reinforcement Learning (FGPRL)
Autonomously training interpretable control strategies, called policies, using pre-existing plant trajectory data is of great interest in industrial applications. Fuzzy controllers have been used in industry for decades as interpretable and efficient system controllers. In this study, we introduce a fuzzy genetic programming (GP) approach called fuzzy GP reinforcement learning (FGPRL) that can select the relevant state features, determine the size of the required fuzzy rule set, and automatically adjust all the controller parameters simultaneously. Each GP individual’s fitness is computed using model-based batch reinforcement learning (RL), which first trains a model using available system samples and subsequently performs Monte Carlo rollouts to predict each policy candidate’s performance. We compare FGPRL to an extended version of a related method called fuzzy particle swarm reinforcement learning (FPSRL), which uses swarm intelligence to tune the fuzzy policy parameters. Experiments using an industrial benchmark show that FGPRL is able to autonomously learn interpretable fuzzy policies with high control performance. …
If you did not already know
09 Sunday Aug 2020
Posted What is ...
in