Tree-Based Pipeline Optimization Tool (TPOT) google
As data science becomes more mainstream, there will be an ever-growing demand for data science tools that are more accessible, exible, and scalable. In response to this demand, automated machine learning (AutoML) researchers have begun building systems that automate the process of designing and optimizing machine learning pipelines. In this paper we present TPOT v0.3, an open source genetic programming-based AutoML system that optimizes a series of feature preprocessors and machine learning models with the goal of maximizing classi cation accuracy on a supervised classi cation task. We benchmark TPOT on a series of 150 supervised classi cation tasks and nd that it signi cantly outperforms a basic machine learning analysis in 21 of them, while experiencing minimal degradation in accuracy on 4 of the benchmarks|all without any domain knowledge nor human input. As such, GP-based AutoML systems show considerable promise in the AutoML domain. …

MultiResUNet google
In recent years Deep Learning has brought about a breakthrough in Medical Image Segmentation. U-Net is the most prominent deep network in this regard, which has been the most popular architecture in the medical imaging community. Despite outstanding overall performance in segmenting multimodal medical images, from extensive experimentations on challenging datasets, we found out that the classical U-Net architecture seems to be lacking in certain aspects. Therefore, we propose some modifications to improve upon the already state-of-the-art U-Net model. Hence, following the modifications we develop a novel architecture MultiResUNet as the potential successor to the successful U-Net architecture. We have compared our proposed architecture MultiResUNet with the classical U-Net on a vast repertoire of multimodal medical images. Albeit slight improvements in the cases of ideal images, a remarkable gain in performance has been attained for challenging images. We have evaluated our model on five different datasets, each with their own unique challenges, and have obtained a relative improvement in performance of 10.15%, 5.07%, 2.63%, 1.41%, and 0.62% respectively. …

Convolutional Tsetlin Machine (CTM) google
Deep neural networks have obtained astounding successes for important pattern recognition tasks, but they suffer from high computational complexity and the lack of interpretability. The recent Tsetlin Machine (TM) attempts to address this lack by using easy-to-interpret conjunctive clauses in propositional logic to solve complex pattern recognition problems. The TM provides competitive accuracy in several benchmarks, while keeping the important property of interpretability. It further facilitates hardware-near implementation since inputs, patterns, and outputs are expressed as bits, while recognition and learning rely on straightforward bit manipulation. In this paper, we exploit the TM paradigm by introducing the Convolutional Tsetlin Machine (CTM), as an interpretable alternative to convolutional neural networks (CNNs). Whereas the TM categorizes an image by employing each clause once to the whole image, the CTM uses each clause as a convolution filter. That is, a clause is evaluated multiple times, once per image patch taking part in the convolution. To make the clauses location-aware, each patch is further augmented with its coordinates within the image. The output of a convolution clause is obtained simply by ORing the outcome of evaluating the clause on each patch. In the learning phase of the TM, clauses that evaluate to 1 are contrasted against the input. For the CTM, we instead contrast against one of the patches, randomly selected among the patches that made the clause evaluate to 1. Accordingly, the standard Type I and Type II feedback of the classic TM can be employed directly, without further modification. The CTM obtains a peak test accuracy of 99.51% on MNIST, 96.21% on Kuzushiji-MNIST, 89.56% on Fashion-MNIST, and 100.0% on the 2D Noisy XOR Problem, which is competitive with results reported for simple 4-layer CNNs, BinaryConnect, and a recent FPGA-accelerated Binary CNN. …

Credibility incorporating Semantic analysis and Temporal factor (CredSaT) google
The widespread use of big social data has pointed the research community in several significant directions. In particular, the notion of social trust has attracted a great deal of attention from information processors | computer scientists and information consumers | formal organizations. This is evident in various applications such as recommendation systems, viral marketing and expertise retrieval. Hence, it is essential to have frameworks that can temporally measure users credibility in all domains categorised under big social data. This paper presents CredSaT (Credibility incorporating Semantic analysis and Temporal factor): a fine-grained users credibility analysis framework for big social data. A novel metric that includes both new and current features, as well as the temporal factor, is harnessed to establish the credibility ranking of users. Experiments on real-world dataset demonstrate the effectiveness and applicability of our model to indicate highly domain-based trustworthy users. Further, CredSaT shows the capacity in capturing spammers and other anomalous users. …