Nonparallel Support Vector Ordinal Regression (NPSVOR) google
Ordinal regression (OR) is a special multiclass classification problem where an order relation exists among the labels. Recent years, people share their opinions and sentimental judgments conveniently with social networks and E-Commerce so that plentiful large-scale OR problems arise. However, few studies have focused on this kind of problems. Nonparallel Support Vector Ordinal Regression (NPSVOR) is a SVM-based OR model, which learns a hyperplane for each rank by solving a series of independent sub-optimization problems and then ensembles those learned hyperplanes to predict. The previous studies are focused on its nonlinear case and got a competitive testing performance, but its training is time consuming, particularly for large-scale data. In this paper, we consider NPSVOR’s linear case and design an efficient training method based on the dual coordinate descent method (DCD). To utilize the order information among labels in prediction, a new prediction function is also proposed. Extensive contrast experiments on the text OR datasets indicate that the carefully implemented DCD is very suitable for training large data. …

Virtual Conditional GAN (vcGAN) google
When trained on multimodal image datasets, normal Generative Adversarial Networks (GANs) are usually outperformed by class-conditional GANs and ensemble GANs, but conditional GANs is restricted to labeled datasets and ensemble GANs lack efficiency. We propose a novel GAN variant called virtual conditional GAN (vcGAN) which is not only an ensemble GAN with multiple generative paths while adding almost zero network parameters, but also a conditional GAN that can be trained on unlabeled datasets without explicit clustering steps or objectives other than the adversary loss. Inside the vcGAN’s generator, a learnable “analog-to-digital converter (ADC)’ module maps a slice of the inputted multivariate Gaussian noise to discrete/digital noise (virtual label), according to which a selector selects the corresponding generative path to produce the sample. All the generative paths share the same decoder network while in each path the decoder network is fed with a concatenation of a different pre-computed amplified one-hot vector and the inputted Gaussian noise. We conducted a lot of experiments on several balanced/imbalanced image datasets to demonstrate that vcGAN converges faster and achieves improved Frech\’et Inception Distance (FID). In addition, we show the training byproduct that the ADC in vcGAN learned the categorical probability of each mode and that each generative path generates samples of specific mode, which enables class-conditional sampling. Codes are available at \url{https://…/vcgan}

DynamicGEM google
DynamicGEM is an open-source Python library for learning node representations of dynamic graphs. It consists of state-of-the-art algorithms for defining embeddings of nodes whose connections evolve over time. The library also contains the evaluation framework for four downstream tasks on the network: graph reconstruction, static and temporal link prediction, node classification, and temporal visualization. We have implemented various metrics to evaluate the state-of-the-art methods, and examples of evolving networks from various domains. We have easy-to-use functions to call and evaluate the methods and have extensive usage documentation. Furthermore, DynamicGEM provides a template to add new algorithms with ease to facilitate further research on the topic. …

SSIMLayer google
Deeper convolutional neural networks provide more capacity to approximate complex mapping functions. However, increasing network depth imposes difficulties on training and increases model complexity. This paper presents a new nonlinear computational layer of considerably high capacity to the deep convolutional neural network architectures. This layer performs a set of comprehensive convolution operations that mimics the overall function of the human visual system (HVS) via focusing on learning structural information in its input. The core of its computations is evaluating the components of the structural similarity metric (SSIM) in a setting that allows the kernels to learn to match structural information. The proposed SSIMLayer is inherently nonlinear and hence, it does not require subsequent nonlinear transformations. Experiments conducted on CIFAR-10 benchmark demonstrates that the SSIMLayer provides better convergence than the traditional convolutional layer, bypasses the need for nonlinear transformations and shows more robustness against noise perturbations and adversarial attacks. …