Zero-Shot Knowledge Distillation
Knowledge distillation deals with the problem of training a smaller model (Student) from a high capacity source model (Teacher) so as to retain most of its performance. Existing approaches use either the training data or meta-data extracted from it in order to train the Student. However, accessing the dataset on which the Teacher has been trained may not always be feasible if the dataset is very large or it poses privacy or safety concerns (e.g., bio-metric or medical data). Hence, in this paper, we propose a novel data-free method to train the Student from the Teacher. Without even using any meta-data, we synthesize the Data Impressions from the complex Teacher model and utilize these as surrogates for the original training data samples to transfer its learning to Student via knowledge distillation. We, therefore, dub our method ‘Zero-Shot Knowledge Distillation’ and demonstrate that our framework results in competitive generalization performance as achieved by distillation using the actual training data samples on multiple benchmark datasets. …
InferLine
The dominant cost in production machine learning workloads is not training individual models but serving predictions from increasingly complex prediction pipelines spanning multiple models, machine learning frameworks, and parallel hardware accelerators. Due to the complex interaction between model configurations and parallel hardware, prediction pipelines are challenging to provision and costly to execute when serving interactive latency-sensitive applications. This challenge is exacerbated by the unpredictable dynamics of bursty workloads. In this paper we introduce InferLine, a system which efficiently provisions and executes ML inference pipelines subject to end-to-end latency constraints by proactively optimizing and reactively controlling per-model configuration in a fine-grained fashion. Unpredictable changes in the serving workload are dynamically and cost-optimally accommodated with minimal service level degradation. InferLine introduces (1) automated model profiling and pipeline lineage extraction, (2) a fine-grain, cost-minimizing pipeline configuration planner, and (3) a fine-grain reactive controller. InferLine is able to configure and deploy prediction pipelines across a wide range of workload patterns and latency goals. It outperforms coarse-grained configuration alternatives by up 7.6x in cost while achieving up to 32x lower SLO miss rate on real workloads and generalizes across state-of-the-art model serving frameworks. …
1-Nearest-Neighbor-Based Multiclass Learning
This paper deals with Nearest-Neighbor (NN) learning algorithms in metric spaces. Initiated by Fix and Hodges in 1951 , this seemingly simplistic learning paradigm remains competitive against more sophisticated methods and, in its celebrated k-NN version, has been placed on a solid theoretical foundation. Although the classic 1-NN is well known to be inconsistent in general, in recent years a series of papers has presented variations on the theme of a regularized 1-NN classifier, as an alternative to the Bayesconsistent k-NN. Gottlieb et al. showed that approximate nearest neighbor search can act as a regularizer, actually improving generalization performance rather than just injecting noise. In a follow-up work, showed that applying Structural Risk Minimization to (essentially) the margin-regularized datadependent bound in yields a strongly Bayes-consistent 1-NN classifier. A further development has seen margin-based regularization analyzed through the lens of sample compression: a near-optimal nearest neighbor condensing algorithm was presented and later extended to cover semimetric spaces ; an activized version also appeared. As detailed in , margin-regularized 1-NN methods enjoy a number of statistical and computational advantages over the traditional k-NN classifier. Salient among these are explicit data-dependent generalization bounds, and considerable runtime and memory savings. Sample compression affords additional advantages, in the form of tighter generalization bounds and increased efficiency in time and space. …
Non Metric Space (Approximate) Library (NMSLIB)
A Non-Metric Space Library (‘NMSLIB’ <https://…/nmslib> ) wrapper, which according to the authors ‘is an efficient cross-platform similarity search library and a toolkit for evaluation of similarity search methods. The goal of the ‘NMSLIB’ <https://…/nmslib> Library is to create an effective and comprehensive toolkit for searching in generic non-metric spaces. Being comprehensive is important, because no single method is likely to be sufficient in all cases. Also note that exact solutions are hardly efficient in high dimensions and/or non-metric spaces. Hence, the main focus is on approximate methods’. The wrapper also includes Approximate Kernel k-Nearest-Neighbor functions based on the ‘NMSLIB’ <https://…/nmslib> ‘Python’ Library. …
If you did not already know
27 Monday Jul 2020
Posted What is ...
in