Partial Order Pruning
Achieving good speed and accuracy trade-off on target platform is very important in deploying deep neural networks. Most existing automatic architecture search approaches only pursue high performance but ignores such an important factor. In this work, we propose an algorithm ‘Partial Order Pruning’ to prune architecture search space with partial order assumption, quickly lift the boundary of speed/accuracy trade-off on target platform, and automatically search the architecture with the best speed and accuracy trade-off. Our algorithm explicitly take profile information about the inference speed on target platform into consideration. With the proposed algorithm, we present several ‘Dongfeng’ networks that provide high accuracy and fast inference speed on various application GPU platforms. By further searching decoder architecture, our DF-Seg real-time segmentation models yields state-of-the-art speed/accuracy trade-off on both embedded device and high-end GPU. …
Open-Domain Spoken Question Answering Dataset (ODSQA)
Reading comprehension by machine has been widely studied, but machine comprehension of spoken content is still a less investigated problem. In this paper, we release Open-Domain Spoken Question Answering Dataset (ODSQA) with more than three thousand questions. To the best of our knowledge, this is the largest real SQA dataset. On this dataset, we found that ASR errors have catastrophic impact on SQA. To mitigate the effect of ASR errors, subword units are involved, which brings consistent improvements over all the models. We further found that data augmentation on text-based QA training examples can improve SQA. …
Variational Walkback
We propose a novel method to directly learn a stochastic transition operator whose repeated application provides generated samples. Traditional undirected graphical models approach this problem indirectly by learning a Markov chain model whose stationary distribution obeys detailed balance with respect to a parameterized energy function. The energy function is then modified so the model and data distributions match, with no guarantee on the number of steps required for the Markov chain to converge. Moreover, the detailed balance condition is highly restrictive: energy based models corresponding to neural networks must have symmetric weights, unlike biological neural circuits. In contrast, we develop a method for directly learning arbitrarily parameterized transition operators capable of expressing non-equilibrium stationary distributions that violate detailed balance, thereby enabling us to learn more biologically plausible asymmetric neural networks and more general non-energy based dynamical systems. The proposed training objective, which we derive via principled variational methods, encourages the transition operator to ‘walk back’ in multi-step trajectories that start at data-points, as quickly as possible back to the original data points. We present a series of experimental results illustrating the soundness of the proposed approach, Variational Walkback (VW), on the MNIST, CIFAR-10, SVHN and CelebA datasets, demonstrating superior samples compared to earlier attempts to learn a transition operator. We also show that although each rapid training trajectory is limited to a finite but variable number of steps, our transition operator continues to generate good samples well past the length of such trajectories, thereby demonstrating the match of its non-equilibrium stationary distribution to the data distribution. Source Code: http://…/walkback_nips17 …
Deep Decoder
Deep neural networks, in particular convolutional neural networks, have become highly effective tools for compressing images and solving inverse problems including denoising, inpainting, and reconstruction from few and noisy measurements. This success can be attributed in part to their ability to represent and generate natural images well. Contrary to classical tools such as wavelets, image-generating deep neural networks have a large number of parameters—typically a multiple of their output dimension—and need to be trained on large datasets. In this paper, we propose an untrained simple image model, called the deep decoder, which is a deep neural network that can generate natural images from very few weight parameters. The deep decoder has a simple architecture with no convolutions and fewer weight parameters than the output dimensionality. This underparameterization enables the deep decoder to compress images into a concise set of network weights, which we show is on par with wavelet-based thresholding. Further, underparameterization provides a barrier to overfitting, allowing the deep decoder to have state-of-the-art performance for denoising. The deep decoder is simple in the sense that each layer has an identical structure that consists of only one upsampling unit, pixel-wise linear combination of channels, ReLU activation, and channelwise normalization. This simplicity makes the network amenable to theoretical analysis, and it sheds light on the aspects of neural networks that enable them to form effective signal representations. …
If you did not already know
25 Saturday Jul 2020
Posted What is ...
in
Pingback: If you did not already know |