Tensorflow Boosted Trees (TFBT) google
TF Boosted Trees (TFBT) is a new open-sourced frame-work for the distributed training of gradient boosted trees. It is based on TensorFlow, and its distinguishing features include a novel architecture, automatic loss differentiation, layer-by-layer boosting that results in smaller ensembles and faster prediction, principled multi-class handling, and a number of regularization techniques to prevent overfitting. …

Scene Text Editor using Font Adaptive Neural Network (STEFANN) google
Textual information in a captured scene play important role in scene interpretation and decision making. Pieces of dedicated research work are going on to detect and recognize textual data accurately in images. Though there exist methods that can successfully detect complex text regions present in a scene, to the best of our knowledge there is no work to modify the textual information in an image. This paper deals with a simple text editor that can edit/modify the textual part in an image. Apart from error correction in the text part of the image, this work can directly increase the reusability of images drastically. In this work, at first, we focus on the problem to generate unobserved characters with the similar font and color of an observed text character present in a natural scene with minimum user intervention. To generate the characters, we propose a multi-input neural network that adapts the font-characteristics of a given characters (source), and generate desired characters (target) with similar font features. We also propose a network that transfers color from source to target character without any visible distortion. Next, we place the generated character in a word for its modification maintaining the visual consistency with the other characters in the word. The proposed method is a unified platform that can work like a simple text editor and edit texts in images. We tested our methodology on popular ICDAR 2011 and ICDAR 2013 datasets and results are reported here. …

Versatile Tensor Accelerator (VTA) google
Hardware acceleration is an enabler for ubiquitous and efficient deep learning. With hardware accelerators being introduced in datacenter and edge devices, it is time to acknowledge that hardware specialization is central to the deep learning system stack. This technical report presents the Versatile Tensor Accelerator (VTA), an open, generic, and customizable deep learning accelerator design. VTA is a programmable accelerator that exposes a RISC-like programming abstraction to describe operations at the tensor level. We designed VTA to expose the most salient and common characteristics of mainstream deep learning accelerators, such as tensor operations, DMA load/stores, and explicit compute/memory arbitration. VTA is more than a standalone accelerator design: it’s an end-to-end solution that includes drivers, a JIT runtime, and an optimizing compiler stack based on TVM. The current release of VTA includes a behavioral hardware simulator, as well as the infrastructure to deploy VTA on low-cost FPGA development boards for fast prototyping. By extending the TVM stack with a customizable, and open source deep learning hardware accelerator design, we are exposing a transparent end-to-end deep learning stack from the high-level deep learning framework, down to the actual hardware design and implementation. This forms a truly end-to-end, from software-to-hardware open source stack for deep learning systems. …

Grey Box Model google
In mathematics, statistics, and computational modelling, a grey box model combines a partial theoretical structure with data to complete the model. The theoretical structure may vary from information on the smoothness of results, to models that need only parameter values from data or existing literature. Thus, almost all models are grey box models as opposed to black box where no model form is assumed or white box models that are purely theoretical. Some models assume a special form such as a linear regression or neural network. These have special analysis methods. In particular linear regression techniques are much more efficient than most non-linear techniques. The model can be deterministic or stochastic (i.e. containing random components) depending on its planned use. …