**Continuous Semantic Topic Embedding Model (CSTEM)**

This paper proposes the continuous semantic topic embedding model (CSTEM) which finds latent topic variables in documents using continuous semantic distance function between the topics and the words by means of the variational autoencoder(VAE). The semantic distance could be represented by any symmetric bell-shaped geometric distance function on the Euclidean space, for which the Mahalanobis distance is used in this paper. In order for the semantic distance to perform more properly, we newly introduce an additional model parameter for each word to take out the global factor from this distance indicating how likely it occurs regardless of its topic. It certainly improves the problem that the Gaussian distribution which is used in previous topic model with continuous word embedding could not explain the semantic relation correctly and helps to obtain the higher topic coherence. Through the experiments with the dataset of 20 Newsgroup, NIPS papers and CNN/Dailymail corpus, the performance of the recent state-of-the-art models is accomplished by our model as well as generating topic embedding vectors which makes possible to observe where the topic vectors are embedded with the word vectors in the real Euclidean space and how the topics are related each other semantically. … **Adversarially-Trained Normalized Noisy-Feature Auto-Encoder (ATNNFAE)**

This article proposes Adversarially-Trained Normalized Noisy-Feature Auto-Encoder (ATNNFAE) for byte-level text generation. An ATNNFAE consists of an auto-encoder where the internal code is normalized on the unit sphere and corrupted by additive noise. Simultaneously, a replica of the decoder (sharing the same parameters as the AE decoder) is used as the generator and fed with random latent vectors. An adversarial discriminator is trained to distinguish training samples reconstructed from the AE from samples produced through the random-input generator, making the entire generator-discriminator path differentiable for discrete data like text. The combined effect of noise injection in the code and shared weights between the decoder and the generator can prevent the mode collapsing phenomenon commonly observed in GANs. Since perplexity cannot be applied to non-sequential text generation, we propose a new evaluation method using the total variance distance between frequencies of hash-coded byte-level n-grams (NGTVD). NGTVD is a single benchmark that can characterize both the quality and the diversity of the generated texts. Experiments are offered in 6 large-scale datasets in Arabic, Chinese and English, with comparisons against n-gram baselines and recurrent neural networks (RNNs). Ablation study on both the noise level and the discriminator is performed. We find that RNNs have trouble competing with the n-gram baselines, and the ATNNFAE results are generally competitive. … **Accelerated Proximal Stochastic Variance Reduced Gradient (ASVRG)**

This paper proposes an accelerated proximal stochastic variance reduced gradient (ASVRG) method, in which we design a simple and effective momentum acceleration trick. Unlike most existing accelerated stochastic variance reduction methods such as Katyusha, ASVRG has only one additional variable and one momentum parameter. Thus, ASVRG is much simpler than those methods, and has much lower per-iteration complexity. We prove that ASVRG achieves the best known oracle complexities for both strongly convex and non-strongly convex objectives. In addition, we extend ASVRG to mini-batch and non-smooth settings. We also empirically verify our theoretical results and show that the performance of ASVRG is comparable with, and sometimes even better than that of the state-of-the-art stochastic methods. … **Self-Adversarially Learned Bayesian Sampling**

Scalable Bayesian sampling is playing an important role in modern machine learning, especially in the fast-developed unsupervised-(deep)-learning models. While tremendous progresses have been achieved via scalable Bayesian sampling such as stochastic gradient MCMC (SG-MCMC) and Stein variational gradient descent (SVGD), the generated samples are typically highly correlated. Moreover, their sample-generation processes are often criticized to be inefficient. In this paper, we propose a novel self-adversarial learning framework that automatically learns a conditional generator to mimic the behavior of a Markov kernel (transition kernel). High-quality samples can be efficiently generated by direct forward passes though a learned generator. Most importantly, the learning process adopts a self-learning paradigm, requiring no information on existing Markov kernels, e.g., knowledge of how to draw samples from them. Specifically, our framework learns to use current samples, either from the generator or pre-provided training data, to update the generator such that the generated samples progressively approach a target distribution, thus it is called self-learning. Experiments on both synthetic and real datasets verify advantages of our framework, outperforming related methods in terms of both sampling efficiency and sample quality. …

# If you did not already know

**13**
*Monday*
Jul 2020

Posted What is ...

in