Deep Generative Markov State Model (DeepGenMSM)
We propose a deep generative Markov State Model (DeepGenMSM) learning framework for inference of metastable dynamical systems and prediction of trajectories. After unsupervised training on time series data, the model contains (i) a probabilistic encoder that maps from high-dimensional configuration space to a small-sized vector indicating the membership to metastable (long-lived) states, (ii) a Markov chain that governs the transitions between metastable states and facilitates analysis of the long-time dynamics, and (iii) a generative part that samples the conditional distribution of configurations in the next time step. The model can be operated in a recursive fashion to generate trajectories to predict the system evolution from a defined starting state and propose new configurations. The DeepGenMSM is demonstrated to provide accurate estimates of the long-time kinetics and generate valid distributions for molecular dynamics (MD) benchmark systems. Remarkably, we show that DeepGenMSMs are able to make long time-steps in molecular configuration space and generate physically realistic structures in regions that were not seen in training data. …
Abstract Dialectical Framework (ADF)
Abstract Dialectical Frameworks (ADFs) generalize Dung’s argumentation frameworks allowing various relationships among arguments to be expressed in a systematic way. We further generalize ADFs so as to accommodate arbitrary acceptance degrees for the arguments. This makes ADFs applicable in domains where both the initial status of arguments and their relationship are only insufficiently specified by Boolean functions. We define all standard ADF semantics for the weighted case, including grounded, preferred and stable semantics. We illustrate our approach using acceptance degrees from the unit interval and show how other valuation structures can be integrated. In each case it is sufficient to specify how the generalized acceptance conditions are represented by formulas, and to specify the information ordering underlying the characteristic ADF operator. We also present complexity results for problems related to weighted ADFs. …
BRPC
An industrial-grade RPC framework used throughout Baidu, with 1,000,000+ instances(not counting clients) and thousands kinds of services, called ‘baidu-rpc’ inside Baidu. Only C++ implementation is opensourced right now. …
Neural Semantic Embedding for Entity Normalization (NSEEN)
Much of human knowledge is encoded in the text, such as scientific publications, books, and the web. Given the rapid growth of these resources, we need automated methods to extract such knowledge into formal, machine-processable structures, such as knowledge graphs. An important task in this process is entity normalization (also called entity grounding, or resolution), which consists of mapping entity mentions in text to canonical entities in well-known reference sets. However, entity resolution is a challenging problem, since there often are many textual forms for a canonical entity. The problem is particularly acute in the scientific domain, such as biology. For example, a protein may have many different names and syntactic variations on these names. To address this problem, we have developed a general, scalable solution based on a deep Siamese neural network model to embed the semantic information about the entities, as well as their syntactic variations. We use these embeddings for fast mapping of new entities to large reference sets, and empirically show the effectiveness of our framework in challenging bio-entity normalization datasets. …
If you did not already know
11 Saturday Jul 2020
Posted What is ...
in