BentoML google
BentoML is a python library for packaging and deploying machine learning models. It provides high-level APIs for defining an ML service and packaging its artifacts, source code, dependencies, and configurations into a production-system-friendly format that is ready for deployment. …

RetinaNet google
RetinaNet, an one-stage detector, by using focal loss, lower loss is contributed by ‘easy’ negative samples so that the loss is focusing on ‘hard’ samples, which improves the prediction accuracy. With ResNet+FPN as backbone for feature extraction, plus two task-specific subnetworks for classification and bounding box regression, forming the RetinaNet, which achieves state-of-the-art performance, outperforms Faster R-CNN, the well-known two-stage detectors. …

Supervised Fuzzy Partitioning (SFP) google
Centroid-based methods including k-means and fuzzy c-means (FCM) are known as effective and easy-to-implement approaches to clustering purposes in many areas of application. However, these algorithms cannot be directly applied to supervised tasks. We propose a generative model extending centroid-based clustering approaches to be applicable to classification and regression problems. Given an arbitrary loss function, our approach, termed supervised fuzzy partitioning (SFP), incorporates labels information into its objective function through a surrogate term penalizing the risk. We also fuzzify the partition and assign weights to features alongside entropy-based regularization terms, enabling the method to capture more complex data structure, to identify significant features, and to yield better performance facing high-dimensional data. An iterative algorithm based on block coordinate descent (BCD) scheme was formulated to efficiently find a local optimizer. The results show that the SFP performance in classification and supervised dimensionality reduction on synthetic and real-world datasets is competitive with state-of-the-art algorithms such as random forest and SVM. Our method has a major advantage over such methods in that it not only leads to a flexible model but also uses the loss function in training phase without compromising computational efficiency. …

Submanifold Sparse Convolutional Network google
Convolutional network are the de-facto standard for analysing spatio-temporal data such as images, videos, 3D shapes, etc. Whilst some of this data is naturally dense (for instance, photos), many other data sources are inherently sparse. Examples include pen-strokes forming on a piece of paper, or (colored) 3D point clouds that were obtained using a LiDAR scanner or RGB-D camera. Standard ‘dense’ implementations of convolutional networks are very inefficient when applied on such sparse data. We introduce a sparse convolutional operation tailored to processing sparse data that differs from prior work on sparse convolutional networks in that it operates strictly on submanifolds, rather than ‘dilating’ the observation with every layer in the network. Our empirical analysis of the resulting submanifold sparse convolutional networks shows that they perform on par with state-of-the-art methods whilst requiring substantially less computation. …