Wikibook-Bot
A Wikipedia book (known as Wikibook) is a collection of Wikipedia articles on a particular theme that is organized as a book. We propose Wikibook-Bot, a machine-learning based technique for automatically generating high quality Wikibooks based on a concept provided by the user. In order to create the Wikibook we apply machine learning algorithms to the different steps of the proposed technique. Firs, we need to decide whether an article belongs to a specific Wikibook – a classification task. Then, we need to divide the chosen articles into chapters – a clustering task – and finally, we deal with the ordering task which includes two subtasks: order articles within each chapter and order the chapters themselves. We propose a set of structural, text-based and unique Wikipedia features, and we show that by using these features, a machine learning classifier can successfully address the above challenges. The predictive performance of the proposed method is evaluated by comparing the auto-generated books to existing 407 Wikibooks which were manually generated by humans. For all the tasks we were able to obtain high and statistically significant results when comparing the Wikibook-bot books to books that were manually generated by Wikipedia contributors …
Byzantine Stochastic Gradient Descent (BSGD)
This paper studies the problem of distributed stochastic optimization in an adversarial setting where, out of the $m$ machines which allegedly compute stochastic gradients every iteration, an $\alpha$-fraction are Byzantine, and can behave arbitrarily and adversarially. Our main result is a variant of stochastic gradient descent (SGD) which finds $\varepsilon$-approximate minimizers of convex functions in $T = \tilde{O}\big( \frac{1}{\varepsilon^2 m} + \frac{\alpha^2}{\varepsilon^2} \big)$ iterations. In contrast, traditional mini-batch SGD needs $T = O\big( \frac{1}{\varepsilon^2 m} \big)$ iterations, but cannot tolerate Byzantine failures. Further, we provide a lower bound showing that, up to logarithmic factors, our algorithm is information-theoretically optimal both in terms of sampling complexity and time complexity. …
KnOwledge Discovery by Accuracy Maximization (KODAMA)
Here we describe KODAMA (knowledge discovery by accuracy maximization), an unsupervised and semisupervised learning algorithm that performs feature extraction from noisy and high-dimensional data. Unlike other data mining methods, the peculiarity of KODAMA is that it is driven by an integrated procedure of cross-validation of the results. The discovery of a local manifold’s topology is led by a classifier through a Monte Carlo procedure of maximization of cross-validated predictive accuracy. Briefly, our approach differs from previous methods in that it has an integrated procedure of validation of the results. In this way, the method ensures the highest robustness of the obtained solution.
http://www.kodama-project.com …
Independently Recurrent Long Short-Term Memory (IndyLSTM)
We introduce Independently Recurrent Long Short-term Memory cells: IndyLSTMs. These differ from regular LSTM cells in that the recurrent weights are not modeled as a full matrix, but as a diagonal matrix, i.e.\ the output and state of each LSTM cell depends on the inputs and its own output/state, as opposed to the input and the outputs/states of all the cells in the layer. The number of parameters per IndyLSTM layer, and thus the number of FLOPS per evaluation, is linear in the number of nodes in the layer, as opposed to quadratic for regular LSTM layers, resulting in potentially both smaller and faster models. We evaluate their performance experimentally by training several models on the popular \iamondb and CASIA online handwriting datasets, as well as on several of our in-house datasets. We show that IndyLSTMs, despite their smaller size, consistently outperform regular LSTMs both in terms of accuracy per parameter, and in best accuracy overall. We attribute this improved performance to the IndyLSTMs being less prone to overfitting. …
If you did not already know
10 Friday Jul 2020
Posted What is ...
in