Mean Field Reinforcement Learning (MFRL) google
Existing multi-agent reinforcement learning methods are limited typically to a small number of agents. When the agent number increases largely, the learning becomes intractable due to the curse of the dimensionality and the exponential growth of user interactions. In this paper, we present Mean Field Reinforcement Learning where the interactions within the population of agents are approximated by those between a single agent and the average effect from the overall population or neighboring agents; the interplay between the two entities is mutually reinforced: the learning of the individual agent’s optimal policy depends on the dynamics of the population, while the dynamics of the population change according to the collective patterns of the individual policies. We develop practical mean field Q-learning and mean field Actor-Critic algorithms and analyze the convergence of the solution. Experiments on resource allocation, Ising model estimation, and battle game tasks verify the learning effectiveness of our mean field approaches in handling many-agent interactions in population. …

Monica google
Can you remember the names of the children of all your friends? Can you remember the wedding anniversary of your brother? Can you tell the last time you called your grand mother and what you talked about? Monica lets you quickly and easily log all those information so you can be a better friend, family member or spouse. …

Probabilistic Causation google
Probabilistic causation is a concept in a group of philosophical theories that aim to characterize the relationship between cause and effect using the tools of probability theory. The central idea behind these theories is that causes raise the probabilities of their effects, all else being equal. Interpreting causation as a deterministic relation means that if A causes B, then A must always be followed by B. In this sense, war does not cause deaths, nor does smoking cause cancer. As a result, many turn to a notion of probabilistic causation. Informally, A probabilistically causes B if A’s occurrence increases the probability of B. This is sometimes interpreted to reflect imperfect knowledge of a deterministic system but other times interpreted to mean that the causal system under study has an inherently indeterministic nature. (Propensity probability is an analogous idea, according to which probabilities have an objective existence and are not just limitations in a subject’s knowledge). Philosophers such as Hugh Mellor and Patrick Suppes have defined causation in terms of a cause preceding and increasing the probability of the effect. …

Self-Imitation Learning (SIL) google
This paper proposes Self-Imitation Learning (SIL), a simple off-policy actor-critic algorithm that learns to reproduce the agent’s past good decisions. This algorithm is designed to verify our hypothesis that exploiting past good experiences can indirectly drive deep exploration. Our empirical results show that SIL significantly improves advantage actor-critic (A2C) on several hard exploration Atari games and is competitive to the state-of-the-art count-based exploration methods. We also show that SIL improves proximal policy optimization (PPO) on MuJoCo tasks. …