Cascade Attribute Learning Network (CALNet)
We propose the cascade attribute learning network (CALNet), which can learn attributes in a control task separately and assemble them together. Our contribution is twofold: first we propose attribute learning in reinforcement learning (RL). Attributes used to be modeled using constraint functions or terms in the objective function, making it hard to transfer. Attribute learning, on the other hand, models these task properties as modules in the policy network. We also propose using novel cascading compensative networks in the CALNet to learn and assemble attributes. Using the CALNet, one can zero shoot an unseen task by separately learning all its attributes, and assembling the attribute modules. We have validated the capacity of our model on a wide variety of control problems with attributes in time, position, velocity and acceleration phases. …
Collaborative Convolutional Network (CoCoNet)
We present an end-to-end CNN architecture for fine-grained visual recognition called Collaborative Convolutional Network (CoCoNet). The network uses a collaborative filter after the convolutional layers to represent an image as an optimal weighted collaboration of features learned from training samples as a whole rather than one at a time. This gives CoCoNet more power to encode the fine-grained nature of the data with limited samples in an end-to-end fashion. We perform a detailed study of the performance with 1-stage and 2-stage transfer learning and different configurations with benchmark architectures like AlexNet and VggNet. The ablation study shows that the proposed method outperforms its constituent parts considerably and consistently. CoCoNet also outperforms the baseline popular deep learning based fine-grained recognition method, namely Bilinear-CNN (BCNN) with statistical significance. Experiments have been performed on the fine-grained species recognition problem, but the method is general enough to be applied to other similar tasks. Lastly, we also introduce a new public dataset for fine-grained species recognition, that of Indian endemic birds and have reported initial results on it. The training metadata and new dataset are available through the corresponding author. …
ISBNet
Recent years have witnessed growing interests in designing efficient neural networks and neural architecture search (NAS). Although remarkable efficiency and accuracy have been achieved, existing expert designed and NAS models neglect that input instances are of varying complexity thus different amount of computation is required. Therefore, inference with a fixed model that processes all instances through the same transformations would waste plenty of computational resources. Customizing the model capacity in an instance-aware manner is highly demanded. In this paper, we introduce a novel network ISBNet to address this issue, which supports efficient instance-level inference by selectively bypassing transformation branches of infinitesimal importance weight. We also propose lightweight hypernetworks SelectionNet to generate these importance weights instance-wisely. Extensive experiments have been conducted to evaluate the efficiency of ISBNet and the results show that ISBNet achieves extremely efficient inference comparing to existing networks. For example, ISBNet takes only 12.45% parameters and 45.79% FLOPs of the state-of-the-art efficient network ShuffleNetV2 with comparable accuracy. …
DeepTag
In many under-resourced settings, clinicians lack time and expertise to annotate patients with standard medical diagnosis codes. Veterinary medicine is an example of this and clinical encounters are largely captured in free text notes which are not labeled with diagnosis code. The lack of such standard coding makes it challenging to apply data science to improve patient care. It is also a major impediment to translational research, where, for example, we would like to leverage veterinary data to inform drug development for humans. We develop a deep learning algorithm, DeepTag, to automatically infer diagnosis codes from veterinarian free text notes. DeepTag is trained on a newly curated dataset of 112,558 veterinary notes manually annotated by experts. DeepTag extends multi-task LSTM with an improved hierarchical objective that captures structures between diseases. To foster human-machine collaboration, DeepTag also learns to abstain in examples when it is uncertain and defer them to human experts, resulting in improved performance of the model. DeepTag accurately infers disease codes from free text even in challenging out-of-domain settings where the text comes from different clinics than the ones used for training. It enables automated disease annotation across a broad range of clinical diagnoses with minimal pre-processing. The technical framework in this work can be applied in other medical domains that currently lack medical coding infrastructure. …
If you did not already know
02 Thursday Jul 2020
Posted What is ...
in