Weight Standardization (WS)
In this paper, we propose Weight Standardization (WS) to accelerate deep network training. WS is targeted at the micro-batch training setting where each GPU typically has only 1-2 images for training. The micro-batch training setting is hard because small batch sizes are not enough for training networks with Batch Normalization (BN), while other normalization methods that do not rely on batch knowledge still have difficulty matching the performances of BN in large-batch training. Our WS ends this problem because when used with Group Normalization and trained with 1 image/GPU, WS is able to match or outperform the performances of BN trained with large batch sizes with only 2 more lines of code. In micro-batch training, WS significantly outperforms other normalization methods. WS achieves these superior results by standardizing the weights in the convolutional layers, which we show is able to smooth the loss landscape by reducing the Lipschitz constants of the loss and the gradients. The effectiveness of WS is verified on many tasks, including image classification, object detection, instance segmentation, video recognition, semantic segmentation, and point cloud recognition. The code is available here: https://…/WeightStandardization. …
Deep COACH (D-COACH)
Deep Reinforcement Learning (DRL) has become a powerful strategy to solve complex decision making problems based on Deep Neural Networks (DNNs). However, it is highly data demanding, so unfeasible in physical systems for most applications. In this work, we approach an alternative Interactive Machine Learning (IML) strategy for training DNN policies based on human corrective feedback, with a method called Deep COACH (D-COACH). This approach not only takes advantage of the knowledge and insights of human teachers as well as the power of DNNs, but also has no need of a reward function (which sometimes implies the need of external perception for computing rewards). We combine Deep Learning with the COrrective Advice Communicated by Humans (COACH) framework, in which non-expert humans shape policies by correcting the agent’s actions during execution. The D-COACH framework has the potential to solve complex problems without much data or time required. Experimental results validated the efficiency of the framework in three different problems (two simulated, one with a real robot), with state spaces of low and high dimensions, showing the capacity to successfully learn policies for continuous action spaces like in the Car Racing and Cart-Pole problems faster than with DRL. …
Language Model Based Grammatical Error Correction (LM-GEC)
Grammatical error correction (GEC) is one of the areas in natural language processing in which purely neural models have not yet superseded more traditional symbolic models. Hybrid systems combining phrase-based statistical machine translation (SMT) and neural sequence models are currently among the most effective approaches to GEC. However, both SMT and neural sequence-to-sequence models require large amounts of annotated data. Language model based Grammatical error correction (LM-GEC) is a promising alternative which does not rely on annotated training data. We show how to improve LM-GEC by applying modelling techniques based on finite state transducers. We report further gains by rescoring with neural language models. We show that our methods developed for LM-GEC can also be used with SMT systems if annotated training data is available. Our best system outperforms the best published result on the CoNLL-2014 test set, and achieves far better relative improvements over the SMT baselines than previous hybrid systems. …
Matrix Linear Discriminant Analysis
We propose a novel linear discriminant analysis approach for the classification of high-dimensional matrix-valued data that commonly arises from imaging studies. Motivated by the equivalence of the conventional linear discriminant analysis and the ordinary least squares, we consider an efficient nuclear norm penalized regression that encourages a low-rank structure. Theoretical properties including a non-asymptotic risk bound and a rank consistency result are established. Simulation studies and an application to electroencephalography data show the superior performance of the proposed method over the existing approaches. …
If you did not already know
27 Saturday Jun 2020
Posted What is ...
in