Model-Implied Instrumental Variable Two-Stage Bayesian Model Averaging (MIIV-2SBMA) google
Model-Implied Instrumental Variable Two-Stage Least Squares (MIIV-2SLS) is a limited information, equation-by-equation, non-iterative estimator for latent variable models. Associated with this estimator are equation specific tests of model misspecification. We propose an extension to the existing MIIV-2SLS estimator that utilizes Bayesian model averaging which we term Model-Implied Instrumental Variable Two-Stage Bayesian Model Averaging (MIIV-2SBMA). MIIV-2SBMA accounts for uncertainty in optimal instrument set selection, and provides powerful instrument specific tests of model misspecification and instrument strength. We evaluate the performance of MIIV-2SBMA against MIIV-2SLS in a simulation study and show that it has comparable performance in terms of parameter estimation. Additionally, our instrument specific overidentification tests developed within the MIIV-2SBMA framework show increased power to detect model misspecification over the traditional equation level tests of model misspecification. Finally, we demonstrate the use of MIIV-2SBMA using an empirical example. …

Subword Regularization google
Subword units are an effective way to alleviate the open vocabulary problems in neural machine translation (NMT). While sentences are usually converted into unique subword sequences, subword segmentation is potentially ambiguous and multiple segmentations are possible even with the same vocabulary. The question addressed in this paper is whether it is possible to harness the segmentation ambiguity as a noise to improve the robustness of NMT. We present a simple regularization method, subword regularization, which trains the model with multiple subword segmentations probabilistically sampled during training. In addition, for better subword sampling, we propose a new subword segmentation algorithm based on a unigram language model. We experiment with multiple corpora and report consistent improvements especially on low resource and out-of-domain settings. …

Stanza google
The parameter server architecture is prevalently used for distributed deep learning. Each worker machine in a parameter server system trains the complete model, which leads to a hefty amount of network data transfer between workers and servers. We empirically observe that the data transfer has a non-negligible impact on training time. To tackle the problem, we design a new distributed training system called Stanza. Stanza exploits the fact that in many models such as convolution neural networks, most data exchange is attributed to the fully connected layers, while most computation is carried out in convolutional layers. Thus, we propose layer separation in distributed training: the majority of the nodes just train the convolutional layers, and the rest train the fully connected layers only. Gradients and parameters of the fully connected layers no longer need to be exchanged across the cluster, thereby substantially reducing the data transfer volume. We implement Stanza on PyTorch and evaluate its performance on Azure and EC2. Results show that Stanza accelerates training significantly over current parameter server systems: on EC2 instances with Tesla V100 GPU and 10Gb bandwidth for example, Stanza is 1.34x–13.9x faster for common deep learning models. …

Noise-Contrastive Estimation (NCE) google
Many parametric statistical models are not properly normalised and only specified up to an intractable partition function, which renders parameter estimation difficult. Examples of unnormalised models are Gibbs distributions, Markov random fields, and neural network models in unsupervised deep learning. In previous work, the estimation principle called noise-contrastive estimation (NCE) was introduced where unnormalised models are estimated by learning to distinguish between data and auxiliary noise. An open question is how to best choose the auxiliary noise distribution. We here propose a new method that addresses this issue. The proposed method shares with NCE the idea of formulating density estimation as a supervised learning problem but in contrast to NCE, the proposed method leverages the observed data when generating noise samples. The noise can thus be generated in a semi-automated manner. We first present the underlying theory of the new method, show that score matching emerges as a limiting case, validate the method on continuous and discrete valued synthetic data, and show that we can expect an improved performance compared to NCE when the data lie in a lower-dimensional manifold. Then we demonstrate its applicability in unsupervised deep learning by estimating a four-layer neural image model. …