Least Absolute Deviations Estimator (LADE)
This paper provides an entire inference procedure for the autoregressive model under (conditional) heteroscedasticity of unknown form with a finite variance. We first establish the asymptotic normality of the weighted least absolute deviations estimator (LADE) for the model. Second, we develop the random weighting (RW) method to estimate its asymptotic covariance matrix, leading to the implementation of the Wald test. Third, we construct a portmanteau test for model checking, and use the RW method to obtain its critical values. As a special weighted LADE, the feasible adaptive LADE (ALADE) is proposed and proved to have the same efficiency as its infeasible counterpart. The importance of our entire methodology based on the feasible ALADE is illustrated by simulation results and the real data analysis on three U.S. economic data sets. …
Differentiable Satisfiability and Differentiable Answer Set Programming (Differentiable SAT/ASP)
We propose Differentiable Satisfiability and Differentiable Answer Set Programming (Differentiable SAT/ASP) for multi-model optimization. Models (answer sets or satisfying truth assignments) are sampled using a novel SAT/ASP solving approach which uses a gradient descent-based branching mechanism. Sampling proceeds until the value of a user-defined multi-model cost function reaches a given threshold. As major use cases for our approach we propose distribution-aware model sampling and expressive yet scalable probabilistic logic programming. As our main algorithmic approach to Differentiable SAT/ASP, we introduce an enhancement of the state-of-the-art CDNL/CDCL algorithm for SAT/ASP solving. Additionally, we present alternative algorithms which use an unmodified ASP solver (Clingo/clasp) and map the optimization task to conventional answer set optimization or use so-called propagators. We also report on the open source software DelSAT, a recent prototype implementation of our main algorithm, and on initial experimental results which indicate that DelSATs performance is, when applied to the use case of probabilistic logic inference, on par with Markov Logic Network (MLN) inference performance, despite having advantageous properties compared to MLNs, such as the ability to express inductive definitions and to work with probabilities as weights directly in all cases. Our experiments also indicate that our main algorithm is strongly superior in terms of performance compared to the presented alternative approaches which reduce a common instance of the general problem to regular SAT/ASP. …
Co-Creative System
Machine learning has been applied to a number of creative, design-oriented tasks. However, it remains unclear how to best empower human users with these machine learning approaches, particularly those users without technical expertise. In this paper we propose a general framework for turn-based interaction between human users and AI agents designed to support human creativity, called {co-creative systems}. The framework can be used to better understand the space of possible designs of co-creative systems and reveal future research directions. We demonstrate how to apply this framework in conjunction with a pair of recent human subject studies, comparing between the four human-AI systems employed in these studies and generating hypotheses towards future studies. …
Contextualized non-Local Neural Network (CN3)
Recently, a large number of neural mechanisms and models have been proposed for sequence learning, of which self-attention, as exemplified by the Transformer model, and graph neural networks (GNNs) have attracted much attention. In this paper, we propose an approach that combines and draws on the complementary strengths of these two methods. Specifically, we propose contextualized non-local neural networks (CN$^{\textbf{3}}$), which can both dynamically construct a task-specific structure of a sentence and leverage rich local dependencies within a particular neighborhood. Experimental results on ten NLP tasks in text classification, semantic matching, and sequence labeling show that our proposed model outperforms competitive baselines and discovers task-specific dependency structures, thus providing better interpretability to users. …
If you did not already know
16 Tuesday Jun 2020
Posted What is ...
in