Delayed-Acceptance Markov Chain Monte Carlo (DA-MCMC)
Delayed-acceptance Markov chain Monte Carlo (DA-MCMC) samples from a probability distribution, via a two-stages version of the Metropolis-Hastings algorithm, by combining the target distribution with a ‘surrogate’ (i.e. an approximate and computationally cheaper version) of said distribution. DA-MCMC accelerates MCMC sampling in complex applications, while still targeting the exact distribution. …
Bayesian Causal Forest
This paper develops a semi-parametric Bayesian regression model for estimating heterogeneous treatment effects from observational data. Standard nonlinear regression models, which may work quite well for prediction, can yield badly biased estimates of treatment effects when fit to data with strong confounding. Our Bayesian causal forests model avoids this problem by directly incorporating an estimate of the propensity function in the specification of the response model, implicitly inducing a covariate-dependent prior on the regression function. This new parametrization also allows treatment heterogeneity to be regularized separately from the prognostic effect of control variables, making it possible to informatively ‘shrink to homogeneity’, in contrast to existing Bayesian non- and semi-parametric approaches. …
Graduated Symbol Map
A map with symbols that change in size according to the value of the attribute they represent. For example, denser populations might be represented by larger dots, or larger rivers by thicker lines. …
Generative Neural Machine Translation (GNMT)
We introduce Generative Neural Machine Translation (GNMT), a latent variable architecture which is designed to model the semantics of the source and target sentences. We modify an encoder-decoder translation model by adding a latent variable as a language agnostic representation which is encouraged to learn the meaning of the sentence. GNMT achieves competitive BLEU scores on pure translation tasks, and is superior when there are missing words in the source sentence. We augment the model to facilitate multilingual translation and semi-supervised learning without adding parameters. This framework significantly reduces overfitting when there is limited paired data available, and is effective for translating between pairs of languages not seen during training. …
If you did not already know
15 Monday Jun 2020
Posted What is ...
in