Stacked Bidirectional LSTM/GRU Network
Videos have become ubiquitous on the Internet. And video analysis can provide lots of information for detecting and recognizing objects as well as help people understand human actions and interactions with the real world. However, facing data as huge as TB level, effective methods should be applied. Recurrent neural network (RNN) architecture has wildly been used on many sequential learning problems such as Language Model, Time-Series Analysis, etc. In this paper, we propose some variations of RNN such as stacked bidirectional LSTM/GRU network with attention mechanism to categorize large-scale video data. We also explore different multimodal fusion methods. Our model combines both visual and audio information on both video and frame level and received great result. Ensemble methods are also applied. Because of its multimodal characteristics, we decide to call this method Deep Multimodal Learning(DML). Our DML-based model was trained on Google Cloud and our own server and was tested in a well-known video classification competition on Kaggle held by Google. …
RecLab
Different software tools have been developed with the purpose of performing offline evaluations of recommender systems. However, the results obtained with these tools may be not directly comparable because of subtle differences in the experimental protocols and metrics. Furthermore, it is difficult to analyze in the same experimental conditions several algorithms without disclosing their implementation details. For these reasons, we introduce RecLab, an open source software for evaluating recommender systems in a distributed fashion. By relying on consolidated web protocols, we created RESTful APIs for training and querying recommenders remotely. In this way, it is possible to easily integrate into the same toolkit algorithms realized with different technologies. In details, the experimenter can perform an evaluation by simply visiting a web interface provided by RecLab. The framework will then interact with all the selected recommenders and it will compute and display a comprehensive set of measures, each representing a different metric. The results of all experiments are permanently stored and publicly available in order to support accountability and comparative analyses. …
Metropolized Knockoff Sampling
Model-X knockoffs is a wrapper that transforms essentially any feature importance measure into a variable selection algorithm, which discovers true effects while rigorously controlling the expected fraction of false positives. A frequently discussed challenge to apply this method is to construct knockoff variables, which are synthetic variables obeying a crucial exchangeability property with the explanatory variables under study. This paper introduces techniques for knockoff generation in great generality: we provide a sequential characterization of all possible knockoff distributions, which leads to a Metropolis-Hastings formulation of an exact knockoff sampler. We further show how to use conditional independence structure to speed up computations. Combining these two threads, we introduce an explicit set of sequential algorithms and empirically demonstrate their effectiveness. Our theoretical analysis proves that our algorithms achieve near-optimal computational complexity in certain cases. The techniques we develop are sufficiently rich to enable knockoff sampling in challenging models including cases where the covariates are continuous and heavy-tailed, and follow a graphical model such as the Ising model. …
Model-Based Value Expansion
Recent model-free reinforcement learning algorithms have proposed incorporating learned dynamics models as a source of additional data with the intention of reducing sample complexity. Such methods hold the promise of incorporating imagined data coupled with a notion of model uncertainty to accelerate the learning of continuous control tasks. Unfortunately, they rely on heuristics that limit usage of the dynamics model. We present model-based value expansion, which controls for uncertainty in the model by only allowing imagination to fixed depth. By enabling wider use of learned dynamics models within a model-free reinforcement learning algorithm, we improve value estimation, which, in turn, reduces the sample complexity of learning. …
If you did not already know
28 Thursday May 2020
Posted What is ...
in