Fair Forest
The potential lack of fairness in the outputs of machine learning algorithms has recently gained attention both within the research community as well as in society more broadly. Surprisingly, there is no prior work developing tree-induction algorithms for building fair decision trees or fair random forests. These methods have widespread popularity as they are one of the few to be simultaneously interpretable, non-linear, and easy-to-use. In this paper we develop, to our knowledge, the first technique for the induction of fair decision trees. We show that our ‘Fair Forest’ retains the benefits of the tree-based approach, while providing both greater accuracy and fairness than other alternatives, for both ‘group fairness’ and ‘individual fairness.” We also introduce new measures for fairness which are able to handle multinomial and continues attributes as well as regression problems, as opposed to binary attributes and labels only. Finally, we demonstrate a new, more robust evaluation procedure for algorithms that considers the dataset in its entirety rather than only a specific protected attribute. …
Extreme View Synthesis
We present Extreme View Synthesis, a solution for novel view extrapolation when the number of input images is small. Occlusions and depth uncertainty, in this context, are two of the most pressing issues, and worsen as the degree of extrapolation increases. State-of-the-art methods approach this problem by leveraging explicit geometric constraints, or learned priors. Our key insight is that only by modeling both depth uncertainty and image priors can the extreme cases be solved. We first generate a depth probability volume for the novel view and synthesize an estimate of the sought image. Then, we use learned priors combined with depth uncertainty, to refine it. Our method is the first to show visually pleasing results for baseline magnifications of up to 30X. …
Heuristics Allied with Distant Supervision (HAnDS)
Fine-grained Entity Recognition (FgER) is the task of detecting and classifying entity mentions to a large set of types spanning diverse domains such as biomedical, finance and sports. We observe that when the type set spans several domains, detection of entity mention becomes a limitation for supervised learning models. The primary reason being lack of dataset where entity boundaries are properly annotated while covering a large spectrum of entity types. Our work directly addresses this issue. We propose Heuristics Allied with Distant Supervision (HAnDS) framework to automatically construct a quality dataset suitable for the FgER task. HAnDS framework exploits the high interlink among Wikipedia and Freebase in a pipelined manner, reducing annotation errors introduced by naively using distant supervision approach. Using HAnDS framework, we create two datasets, one suitable for building FgER systems recognizing up to 118 entity types based on the FIGER type hierarchy and another for up to 1115 entity types based on the TypeNet hierarchy. Our extensive empirical experimentation warrants the quality of the generated datasets. Along with this, we also provide a manually annotated dataset for benchmarking FgER systems. …
Generalized Strucutral Causal Model (GSCM)
Structural causal models are a popular tool to describe causal relations in systems in many fields such as economy, the social sciences, and biology. In this work, we show that these models are not flexible enough in general to give a complete causal representation of equilibrium states in dynamical systems that do not have a unique stable equilibrium independent of initial conditions. We prove that our proposed generalized structural causal models do capture the essential causal semantics that characterize these systems. We illustrate the power and flexibility of this extension on a dynamical system corresponding to a basic enzymatic reaction. We motivate our approach further by showing that it also efficiently describes the effects of interventions on functional laws such as the ideal gas law. …
If you did not already know
26 Tuesday May 2020
Posted What is ...
in