Daisee google
We study adaptive importance sampling (AIS) as an online learning problem and argue for the importance of the trade-off between exploration and exploitation in this adaptation. Borrowing ideas from the bandits literature, we propose Daisee, a partition-based AIS algorithm. We further introduce a notion of regret for AIS and show that Daisee has $\mathcal{O}(\sqrt{T}(\log T)^{\frac{3}{4}})$ cumulative pseudo-regret, where $T$ is the number of iterations. We then extend Daisee to adaptively learn a hierarchical partitioning of the sample space for more efficient sampling and confirm the performance of both algorithms empirically. …

In-Edge AI google
Recently, along with the rapid development of mobile communication technology, edge computing theory and techniques have been attracting more and more attentions from global researchers and engineers, which can significantly bridge the capacity of cloud and requirement of devices by the network edges, and thus can accelerate the content deliveries and improve the quality of mobile services. In order to bring more intelligence to the edge systems, compared to traditional optimization methodology, and driven by the current deep learning techniques, we propose to integrate the Deep Reinforcement Learning techniques and Federated Learning framework with the mobile edge systems, for optimizing the mobile edge computing, caching and communication. And thus, we design the ‘In-Edge AI’ framework in order to intelligently utilize the collaboration among devices and edge nodes to exchange the learning parameters for a better training and inference of the models, and thus to carry out dynamic system-level optimization and application-level enhancement while reducing the unnecessary system communication load. ‘In-Edge AI’ is evaluated and proved to have near-optimal performance but relatively low overhead of learning, while the system is cognitive and adaptive to the mobile communication systems. Finally, we discuss several related challenges and opportunities for unveiling a promising upcoming future of ‘In-Edge AI’. …

Learning to Weight (LTW) google
In information retrieval (IR) and related tasks, term weighting approaches typically consider the frequency of the term in the document and in the collection in order to compute a score reflecting the importance of the term for the document. In tasks characterized by the presence of training data (such as text classification) it seems logical that the term weighting function should take into account the distribution (as estimated from training data) of the term across the classes of interest. Although `supervised term weighting’ approaches that use this intuition have been described before, they have failed to show consistent improvements. In this article we analyse the possible reasons for this failure, and call consolidated assumptions into question. Following this criticism we propose a novel supervised term weighting approach that, instead of relying on any predefined formula, learns a term weighting function optimised on the training set of interest; we dub this approach \emph{Learning to Weight} (LTW). The experiments that we run on several well-known benchmarks, and using different learning methods, show that our method outperforms previous term weighting approaches in text classification. …

DID-MDN google
Single image rain streak removal is an extremely challenging problem due to the presence of non-uniform rain densities in images. We present a novel density-aware multi-stream densely connected convolutional neural network-based algorithm, called DID-MDN, for joint rain density estimation and de-raining. The proposed method enables the network itself to automatically determine the rain-density information and then efficiently remove the corresponding rain-streaks guided by the estimated rain-density label. To better characterize rain-streaks with different scales and shapes, a multi-stream densely connected de-raining network is proposed which efficiently leverages features from different scales. Furthermore, a new dataset containing images with rain-density labels is created and used to train the proposed density-aware network. Extensive experiments on synthetic and real datasets demonstrate that the proposed method achieves significant improvements over the recent state-of-the-art methods. In addition, an ablation study is performed to demonstrate the improvements obtained by different modules in the proposed method. Code can be found at: https://…/hezhangsprinter

Advertisements