Best Linear Adaptive Enhancement (BLADE)
The Rapid and Accurate Image Super Resolution (RAISR) method of Romano, Isidoro, and Milanfar is a computationally efficient image upscaling method using a trained set of filters. We describe a generalization of RAISR, which we name Best Linear Adaptive Enhancement (BLADE). This approach is a trainable edge-adaptive filtering framework that is general, simple, computationally efficient, and useful for a wide range of image processing problems. We show applications to denoising, compression artifact removal, demosaicing, and approximation of anisotropic diffusion equations. …
Resource-Aware Storm (R-Storm)
The era of big data has led to the emergence of new systems for real-time distributed stream processing, e.g., Apache Storm is one of the most popular stream processing systems in industry today. However, Storm, like many other stream processing systems lacks an intelligent scheduling mechanism. The default round-robin scheduling currently deployed in Storm disregards resource demands and availability, and can therefore be inefficient at times. We present R-Storm (Resource-Aware Storm), a system that implements resource-aware scheduling within Storm. R-Storm is designed to increase overall throughput by maximizing resource utilization while minimizing network latency. When scheduling tasks, R-Storm can satisfy both soft and hard resource constraints as well as minimizing network distance between components that communicate with each other. We evaluate R-Storm on set of micro-benchmark Storm applications as well as Storm applications used in production at Yahoo! Inc. From our experimental results we conclude that R-Storm achieves 30-47% higher throughput and 69-350% better CPU utilization than default Storm for the micro-benchmarks. For the Yahoo! Storm applications, R-Storm outperforms default Storm by around 50% based on overall throughput. We also demonstrate that R-Storm performs much better when scheduling multiple Storm applications than default Storm. …
Uncertainty Robust Bellman Equation (URBE)
Robust Markov Decision Processes (RMDPs) intend to ensure robustness with respect to changing or adversarial system behavior. In this framework, transitions are modeled as arbitrary elements of a known and properly structured uncertainty set and a robust optimal policy can be derived under the worst-case scenario. In this study, we address the issue of learning in RMDPs using a Bayesian approach. We introduce the Uncertainty Robust Bellman Equation (URBE) which encourages safe exploration for adapting the uncertainty set to new observations while preserving robustness. We propose a URBE-based algorithm, DQN-URBE, that scales this method to higher dimensional domains. Our experiments show that the derived URBE-based strategy leads to a better trade-off between less conservative solutions and robustness in the presence of model misspecification. In addition, we show that the DQN-URBE algorithm can adapt significantly faster to changing dynamics online compared to existing robust techniques with fixed uncertainty sets. …
Hierarchical Multi-Task Learning Model (HMTL)
Much effort has been devoted to evaluate whether multi-task learning can be leveraged to learn rich representations that can be used in various Natural Language Processing (NLP) down-stream applications. However, there is still a lack of understanding of the settings in which multi-task learning has a significant effect. In this work, we introduce a hierarchical model trained in a multi-task learning setup on a set of carefully selected semantic tasks. The model is trained in a hierarchical fashion to introduce an inductive bias by supervising a set of low level tasks at the bottom layers of the model and more complex tasks at the top layers of the model. This model achieves state-of-the-art results on a number of tasks, namely Named Entity Recognition, Entity Mention Detection and Relation Extraction without hand-engineered features or external NLP tools like syntactic parsers. The hierarchical training supervision induces a set of shared semantic representations at lower layers of the model. We show that as we move from the bottom to the top layers of the model, the hidden states of the layers tend to represent more complex semantic information. …
If you did not already know
04 Monday May 2020
Posted What is ...
in