Temporal Point Process google
A temporal point process is a random process whose realizations consist of the times {tau_j}_(j in J) of isolated events. …

AutoDispNet google
Much research work in computer vision is being spent on optimizing existing network architectures to obtain a few more percentage points on benchmarks. Recent AutoML approaches promise to relieve us from this effort. However, they are mainly designed for comparatively small-scale classification tasks. In this work, we show how to use and extend existing AutoML techniques to efficiently optimize large-scale U-Net-like encoder-decoder architectures. In particular, we leverage gradient-based neural architecture search and Bayesian optimization for hyperparameter search. The resulting optimization does not require a large company-scale compute cluster. We show results on disparity estimation that clearly outperform the manually optimized baseline and reach state-of-the-art performance. …

Entropy Signal Reflects the Malicious Document (ESRMD) google
Abstract-Email cyber-attacks based on malicious documents have become the popular techniques in today’s sophisticated attacks. In the past, persistent efforts have been made to detect such attacks. But there are still some common defects in the existing methods including unable to capture unknown attacks, high overhead of resource and time, and just can be used to detect specific formats of documents. In this study, a new Framework named ESRMD (Entropy signal Reflects the Malicious document) is proposed, which can detect malicious document based on the entropy distribution of the file. In essence, ESRMD is a machine learning classifier. What makes it distinctive is that it extracts global and structural entropy features from the entropy of the malicious documents rather than the structural data or metadata of the file, enduing it the ability to deal with various document formats and against the parser-confusion and obfuscated attacks. In order to assess the validity of the model, we conducted extensive experiments on a collected dataset with 10381 samples in it, which contains malware (51.47%) and benign (48.53%) samples. The results show that our model can achieve a good performance on the true positive rate, precision and ROC with the value of 96.00%, 96.69% and 99.2% respectively. We also compared ESRMD with some leading antivirus engines and prevalent tools. The results showed that our framework can achieve a better performance compared with these engines and tools. …

Herfindahl-Hirschman Index google
Based on the aggregated shares retained by individual firms or actors within a market or space, the Herfindahl-Hirschman Index (HHI) measures the level of concentration in the market or space. It is often used as a measure of competition, where 0 equals perfect competition amongst firms or actors and 10,000 equals perfect monopoly. …

Advertisements