Scaling Up Secure Approximate k-Nearest Neighbors Search (SANNS) google
We present new secure protocols for approximate $k$-nearest neighbor search ($k$-NNS) over the Euclidean distance in the semi-honest model. Our implementation is able to handle massive datasets efficiently. On the algorithmic front, we show a new circuit for the approximate top-$k$ selection from $n$ numbers that is built from merely $O(n + \mathrm{poly}(k))$ comparators. Using this circuit as a subroutine, we design new approximate $k$-NNS algorithms and two corresponding secure protocols: 1) optimized linear scan; 2) clustering-based sublinear time algorithm. Our secure protocols utilize a combination of additively-homomorphic encryption, garbled circuit and Oblivious RAM. Along the way, we introduce various optimizations to these primitives, which drastically improve concrete efficiency. We evaluate the new protocols empirically and show that they are able to handle datasets that are significantly larger than in the prior work. For instance, running on two standard Azure instances within the same availability zone, for a dataset of $96$-dimensional descriptors of $10\,000\,000$ images, we can find $10$ nearest neighbors with average accuracy $0.9$ in under $10$ seconds improving upon prior work by at least two orders of magnitude. …

Apache Knox Gateway google
The Apache Knox Gateway is an Application Gateway for interacting with the REST APIs and UIs of Apache Hadoop deployments. The Knox Gateway provides a single access point for all REST and HTTP interactions with Apache Hadoop clusters. …

Computation Graph google
Structural equation modeling (SEM) is evolving as available data is becoming more complex, reaching the limits of what traditional estimation approaches can achieve. As SEM expands to ever larger, more complex applications, the estimation challenge grows and currently available methods will be insufficient. To overcome this challenge in SEM, we see an opportunity to use existing solutions from the field of deep learning, which has been pioneering methods for estimation of complex models for decades. To this end, this paper introduces computation graphs, a flexible method of specifying objective functions. When combined with state-of-the-art optimizers, we argue that our computation graph approach is capable not only of estimating SEM models, but also of rapidly extending them — without the need of bespoke software development for each new extension. We show that several SEM improvements follow naturally from our approach; not only existing extensions such as least absolute deviation estimation and penalized regression models, but also novel extensions such as spike-and-slab penalties for sparse factor analysis. By applying computation graphs to SEM, we hope to greatly accelerate the process of developing SEM techniques, paving the way for novel applications. The accompanying R package tensorsem is under active development. …

Graph Stream Sketch (GSS) google
A graph stream is a continuous sequence of data items, in which each item indicates an edge, including its two endpoints and edge weight. It forms a dynamic graph that changes with every item in the stream. Graph streams play important roles in cyber security, social networks, cloud troubleshooting systems and other fields. Due to the vast volume and high update speed of graph streams, traditional data structures for graph storage such as the adjacency matrix and the adjacency list are no longer sufficient. However, prior art of graph stream summarization, like CM sketches, gSketches, TCM and gMatrix, either supports limited kinds of queries or suffers from poor accuracy of query results. In this paper, we propose a novel Graph Stream Sketch (GSS for short) to summarize the graph streams, which has the linear space cost (O(|E|), E is the edge set of the graph) and the constant update time complexity (O(1)) and supports all kinds of queries over graph streams with the controllable errors. Both theoretical analysis and experiment results confirm the superiority of our solution with regard to the time/space complexity and query results’ precision compared with the state-of-the-art. …