Mini-Batch AUC Optimization (MBA) google
Area under the receiver operating characteristics curve (AUC) is an important metric for a wide range of signal processing and machine learning problems, and scalable methods for optimizing AUC have recently been proposed. However, handling very large datasets remains an open challenge for this problem. This paper proposes a novel approach to AUC maximization, based on sampling mini-batches of positive/negative instance pairs and computing U-statistics to approximate a global risk minimization problem. The resulting algorithm is simple, fast, and learning-rate free. We show that the number of samples required for good performance is independent of the number of pairs available, which is a quadratic function of the positive and negative instances. Extensive experiments show the practical utility of the proposed method. …

NeuNetS google
Application of neural networks to a vast variety of practical applications is transforming the way AI is applied in practice. Pre-trained neural network models available through APIs or capability to custom train pre-built neural network architectures with customer data has made the consumption of AI by developers much simpler and resulted in broad adoption of these complex AI models. While prebuilt network models exist for certain scenarios, to try and meet the constraints that are unique to each application, AI teams need to think about developing custom neural network architectures that can meet the tradeoff between accuracy and memory footprint to achieve the tight constraints of their unique use-cases. However, only a small proportion of data science teams have the skills and experience needed to create a neural network from scratch, and the demand far exceeds the supply. In this paper, we present NeuNetS : An automated Neural Network Synthesis engine for custom neural network design that is available as part of IBM’s AI OpenScale’s product. NeuNetS is available for both Text and Image domains and can build neural networks for specific tasks in a fraction of the time it takes today with human effort, and with accuracy similar to that of human-designed AI models. …

Transformable Bottleneck Network (TBN) google
We propose a novel approach to performing fine-grained 3D manipulation of image content via a convolutional neural network, which we call the Transformable Bottleneck Network (TBN). It applies given spatial transformations directly to a volumetric bottleneck within our encoder-bottleneck-decoder architecture. Multi-view supervision encourages the network to learn to spatially disentangle the feature space within the bottleneck. The resulting spatial structure can be manipulated with arbitrary spatial transformations. We demonstrate the efficacy of TBNs for novel view synthesis, achieving state-of-the-art results on a challenging benchmark. We demonstrate that the bottlenecks produced by networks trained for this task contain meaningful spatial structure that allows us to intuitively perform a variety of image manipulations in 3D, well beyond the rigid transformations seen during training. These manipulations include non-uniform scaling, non-rigid warping, and combining content from different images. Finally, we extract explicit 3D structure from the bottleneck, performing impressive 3D reconstruction from a single input image. …

Residual Ratio Thresholding Greedy Algorithm for Robust de-Noising (RRT-GARD) google
Linear regression models contaminated by Gaussian noise (inlier) and possibly unbounded sparse outliers are common in many signal processing applications. Sparse recovery inspired robust regression (SRIRR) techniques are shown to deliver high quality estimation performance in such regression models. Unfortunately, most SRIRR techniques assume \textit{a priori} knowledge of noise statistics like inlier noise variance or outlier statistics like number of outliers. Both inlier and outlier noise statistics are rarely known \textit{a priori} and this limits the efficient operation of many SRIRR algorithms. This article proposes a novel noise statistics oblivious algorithm called residual ratio thresholding GARD (RRT-GARD) for robust regression in the presence of sparse outliers. RRT-GARD is developed by modifying the recently proposed noise statistics dependent greedy algorithm for robust de-noising (GARD). Both finite sample and asymptotic analytical results indicate that RRT-GARD performs nearly similar to GARD with \textit{a priori} knowledge of noise statistics. Numerical simulations in real and synthetic data sets also point to the highly competitive performance of RRT-GARD. …

Advertisements