Regime Shift google
In ecology, regime shifts are large, abrupt, persistent changes in the structure and function of a system. A regime is a characteristic behaviour of a system which is maintained by mutually reinforced processes or feedbacks. Regimes are considered persistent relative to the time period over which the shift occurs. The change of regimes, or the shift, usually occurs when a smooth change in an internal process (feedback) or a single disturbance (external shocks) triggers a completely different system behavior. Although such non-linear changes have been widely studied in different disciplines ranging from atoms to climate dynamics, regime shifts have gained importance in ecology because they can substantially affect the flow of ecosystem services that societies rely upon, such as provision of food, clean water or climate regulation. Moreover, regime shift occurrence is expected to increase as human influence on the planet increases – the Anthropocene – including current trends on human induced climate change and biodiversity loss. …

Lexicase Selection google
Lexicase selection is a parent selection method that considers test cases separately, rather than in aggregate, when performing parent selection. It performs well in discrete error spaces but not on the continuous-valued problems that compose most system identification tasks. In this paper, we develop a new form of lexicase selection for symbolic regression, named epsilon-lexicase selection, that redefines the pass condition for individuals on each test case in a more effective way. We run a series of experiments on real-world and synthetic problems with several treatments of epsilon and quantify how epsilon affects parent selection and model performance. epsilon-lexicase selection is shown to be effective for regression, producing better fit models compared to other techniques such as tournament selection and age-fitness Pareto optimization. We demonstrate that epsilon can be adapted automatically for individual test cases based on the population performance distribution. Our experiments show that epsilon-lexicase selection with automatic epsilon produces the most accurate models across tested problems with negligible computational overhead. We show that behavioral diversity is exceptionally high in lexicase selection treatments, and that epsilon-lexicase selection makes use of more fitness cases when selecting parents than lexicase selection, which helps explain the performance improvement.
Batch Tournament Selection for Genetic Programming

Neural Process (NP) google
Meta-learning methods leverage past experience to learn data-driven inductive biases from related problems, increasing learning efficiency on new tasks. This ability renders them particularly suitable for sequential decision making with limited experience. Within this problem family, we argue for the use of such approaches in the study of model-based approaches to Bayesian Optimisation, contextual bandits and Reinforcement Learning. We approach the problem by learning distributions over functions using Neural Processes (NPs), a recently introduced probabilistic meta-learning method. This allows the treatment of model uncertainty to tackle the exploration/exploitation dilemma. We show that NPs are suitable for sequential decision making on a diverse set of domains, including adversarial task search, recommender systems and model-based reinforcement learning.
Meta-Learning surrogate models for sequential decision making

Hierarchically Structured Meta-Learning (HSML) google
In order to learn quickly with few samples, meta-learning utilizes prior knowledge learned from previous tasks. However, a critical challenge in meta-learning is task uncertainty and heterogeneity, which can not be handled via globally sharing knowledge among tasks. In this paper, based on gradient-based meta-learning, we propose a hierarchically structured meta-learning (HSML) algorithm that explicitly tailors the transferable knowledge to different clusters of tasks. Inspired by the way human beings organize knowledge, we resort to a hierarchical task clustering structure to cluster tasks. As a result, the proposed approach not only addresses the challenge via the knowledge customization to different clusters of tasks, but also preserves knowledge generalization among a cluster of similar tasks. To tackle the changing of task relationship, in addition, we extend the hierarchical structure to a continual learning environment. The experimental results show that our approach can achieve state-of-the-art performance in both toy-regression and few-shot image classification problems. …