Attentive Dynamics Model (ADM) google
This paper investigates whether learning contingency-awareness and controllable aspects of an environment can lead to better exploration in reinforcement learning. To investigate this question, we consider an instantiation of this hypothesis evaluated on the Arcade Learning Element (ALE). In this study, we develop an attentive dynamics model (ADM) that discovers controllable elements of the observations, which are often associated with the location of the character in Atari games. The ADM is trained in a self-supervised fashion to predict the actions taken by the agent. The learned contingency information is used as a part of the state representation for exploration purposes. We demonstrate that combining A2C with count-based exploration using our representation achieves impressive results on a set of notoriously challenging Atari games due to sparse rewards. For example, we report a state-of-the-art score of >6600 points on Montezuma’s Revenge without using expert demonstrations, explicit high-level information (e.g., RAM states), or supervised data. Our experiments confirm that indeed contingency-awareness is an extremely powerful concept for tackling exploration problems in reinforcement learning and opens up interesting research questions for further investigations. …

Zest google
Programs expecting structured inputs often consist of both a syntactic analysis stage in which raw input is parsed into an internal data structure and a semantic analysis stage which conducts checks on this data structure and executes the core logic of the program. Existing random testing methodologies, like coverage-guided fuzzing (CGF) and generator-based fuzzing, tend to produce inputs that are rejected early in one of these two stages. We propose Zest, a random testing methodology that effectively explores the semantic analysis stages of such programs. Zest combines two key innovations to achieve this. First, we introduce validity fuzzing, which biases CGF towards generating semantically valid inputs. Second, we introduce parametric generators, which convert input from a simple parameter domain, such as a sequence of numbers, into a more structured domain, such as syntactically valid XML. These generators enable parameter-level mutations to map to structural mutations in syntactically valid test inputs. We implement Zest in Java and evaluate it against AFL and QuickCheck, popular CGF and generator-based fuzzing tools, on six real-world benchmarks: Apache Maven, Ant, and BCEL, ScalaChess, the Google Closure compiler, and Mozilla Rhino. We find that Zest achieves the highest coverage of the semantic analysis stage for five of these benchmarks. Further, we find 18 new bugs across the benchmarks, including 7 bugs that are uniquely found by Zest. …

Fisher-Bures Adversary Graph Convolutional Network google
In a graph convolutional network, we assume that the graph $G$ is generated with respect to some observation noise. We make small random perturbations $\Delta{}G$ of the graph and try to improve generalization. Based on quantum information geometry, we can have quantitative measurements on the scale of $\Delta{}G$. We try to maximize the intrinsic scale of the permutation with a small budget while minimizing the loss based on the perturbed $G+\Delta{G}$. Our proposed model can consistently improve graph convolutional networks on semi-supervised node classification tasks with reasonable computational overhead. We present two different types of geometry on the manifold of graphs: one is for measuring the intrinsic change of a graph; the other is for measuring how such changes can affect externally a graph neural network. These new analytical tools will be useful in developing a good understanding of graph neural networks and fostering new techniques. …

Majority-CRF google
We explore active learning (AL) utterance selection for improving the accuracy of new underrepresented domains in a natural language understanding (NLU) system. Moreover, we propose an AL algorithm called Majority-CRF that uses an ensemble of classification and sequence labeling models to guide utterance selection for annotation. Experiments with three domains show that Majority-CRF achieves 6.6%-9% relative error rate reduction compared to random sampling with the same annotation budget, and statistically significant improvements compared to other AL approaches. Additionally, case studies with human-in-the-loop AL on six new domains show 4.6%-9% improvement on an existing NLU system. …

Advertisements